
HTTP testing in R

Scott Chamberlain, Maëlle Salmon

2024‑02‑02

2

Contents

1 Preamble 5

I Introduction 7

2 HTTP in R 101 9

2.1 What is HTTP? . 9

2.2 HTTP requests in R: what package? 10

3 Graceful HTTP R packages 15

3.1 Choose the HTTP resource wisely 15

3.2 User‑facing grace (how your package actually works) 16

3.3 Graceful vignettes and examples 16

3.4 Graceful code . 17

3.5 Graceful tests . 17

3.6 Conclusion . 17

4 Packages for HTTP testing 19

4.1 Why do we need special packages for HTTP testing? 19

4.2 webmockr . 19

4.3 What is vcr? . 20

4.4 What is httptest? . 20

4.5 What is httptest2? . 21

4.6 What is webfakes? . 21

3

4 CONTENTS

4.7 testthat . 21

4.8 Conclusion . 22

II Whole Game(s) 23

5 Introduction 25

5.1 Our example packages . 25

5.2 Conclusion . 31

6 Use vcr (& webmockr) 33

6.1 Setup . 33

6.2 Actual testing . 35

6.3 Also testing for real interactions . 38

6.4 Summary . 39

6.5 PS: Where to put use_cassette() . 39

7 Use httptest 41

7.1 Setup . 41

7.2 Actual testing . 42

7.3 Also testing for real interactions . 44

7.4 Summary . 44

8 vcr and httptest 47

8.1 Setting up the infrastructure . 47

8.2 Calling mock files . 47

8.3 Namingmock files . 48

8.4 Matching requests . 48

8.5 Handling secrets . 48

8.6 Recording, playing back . 49

8.7 Testing for API errors . 50

8.8 Conclusion . 50

CONTENTS 5

9 Use httptest2 51

9.1 Setup . 51

9.2 Actual testing . 52

9.3 Also testing for real interactions . 54

9.4 Summary . 54

10 Use webfakes 57

10.1 Setup . 57

10.2 Actual testing . 58

10.3 Also testing for real interactions . 61

10.4 Summary . 61

11 vcr (& webmockr), httptest, webfakes 63

11.1 What HTTP client can you use (curl, httr, crul) 63

11.2 Sustainability of the packages . 63

11.3 Test writing experience . 64

11.4 Test debugging experience . 65

11.5 Conclusion . 65

III Advanced Topics 67

12 Making real requests 69

12.1 What can change? . 69

12.2 How tomake real requests . 69

12.3 Why not make only or toomany real requests? 70

12.4 A complement to real requests: API news! 70

13 CRAN‑ (and Bioconductor) preparedness for your tests 73

13.1 Running tests on CRAN? . 73

13.2 Skipping a few tests on CRAN? . 74

13.3 Skipping all tests on CRAN? . 74

13.4 Stress‑test your package . 74

6 CONTENTS

14 Security 75

14.1 Managing secrets securely . 75

14.2 Sensitive recorded responses? . 79

14.3 Further resources . 79

15 Faking HTTP errors 81

15.1 How to test for API errors (e.g. 503) 81

15.2 How to test for sequence of responses (e.g. 503 then 200) 81

16 Contributor friendliness 83

16.1 Taking notes about encryption . 83

16.2 Providing a sandbox . 83

16.3 Switching between accounts depending on the development mode 84

16.4 Documenting HTTP testing . 84

IV Conclusion 85

17 Conclusion 87

V webmockr details 89

18 Mocking HTTP Requests 91

18.1 Package documentation . 91

18.2 Features . 91

18.3 Howwebmockr works in detail . 91

18.4 Basic usage . 93

19 stubs 95

19.1 Writing to disk . 97

20 testing 99

CONTENTS 7

21 utilities 101

21.1 Managing stubs . 101

21.2 Managing stubs . 101

21.3 Managing requests . 101

VI vcr details 103

22 Caching HTTP requests 105

22.1 Package documentation . 105

22.2 Terminology . 105

22.3 Design . 106

22.4 Basic usage . 109

22.5 vcr enabled testing . 111

23 Advanced vcr usage 113

23.1 Mocking writing to disk . 113

24 Configure vcr 117

24.1 Set configuration variables . 119

24.2 Re‑set to defaults . 120

24.3 Details on some of the config options 120

25 Recordmodes 129

25.1 once . 129

25.2 none . 129

25.3 new_episodes . 130

25.4 all . 130

26 Request matching 131

26.1 Matching . 132

27 Debugging your tests that use vcr 133

27.1 An HTTP request has beenmade that vcr does not know how to handle133

8 CONTENTS

28 Security with vcr 137

28.1 Keeping secrets safe . 137

28.2 API keys and tests run in varied contexts 138

28.3 Other security . 139

29 Turning vcr on and off 141

29.1 turned_off . 142

29.2 turn_off/turn_on . 142

29.3 turned_on . 143

29.4 Environment variables . 144

30 Managing cassettes 145

30.1 Why edit cassettes? . 145

30.2 Risks related to cassette editing . 145

30.3 Example 1: test using an edited cassette with a 503 146

30.4 Example 2: test using an edited cassette with a 503 then a 200 . . . 147

30.5 gitignore cassettes . 150

30.6 Rbuildignore cassettes . 151

30.7 sharing cassettes . 151

30.8 deleting cassettes . 151

30.9 cassette file types . 151

31 Gotchas 153

31.1 Correct line identification . 154

32 Session info 155

32.1 Session info . 155

32.2 Full session info . 157

Chapter 1

Preamble

Are you working on an R package accessing resources on the web, be it a cat facts
API, a scientific data source or your system for Customer relationshipmanagement?
As with all other packages, appropriate unit testing can make your code more ro‑
bust. The unit testing of a package interacting with web resources, however, brings
special challenges: dependenceof tests onagood internet connection, testing in the
absenceof authentication secrets, etc. Having tests fail due to resources being down
or slow, during development or on CRAN, means a time loss for everyone involved
(slower development,messages fromCRAN). Although somepackages accessing re‑
mote resources are well tested, there is a lack of resources around best practices.

This book is meant to be a free, central reference for developers of R packages
accessing web resources, to help them have a faster andmore robust development.
Our aim is to develop a useful guide to go with the great recent tools {vcr},
{webmockr}, {httptest}, {httptest2} and {webfakes}.

We expect you to know package development basics, and git.

Note related to previous versions: this book was intended as a detailed guide to using
a particular suite of packages for HTTP mocking and testing in R code and/or pack‑
ages, namely thosemaintained by Scott Chamberlain ({crul}, {webmockr}, {vcr}),
but its scope has been extended to generalize the explanation of concepts to similar
packages.

You can also read the PDF version or epub version of this book.

Thanks to contributors to the book: Alex Whan, Aurèle, Christophe Dervieux, Daniel
Possenriede, Hugo Gruson, Jon Harmon, Lluís Revilla Sancho, Xavier A.

Project funded by rOpenSci (Scott Chamberlain’s work) & the R Consortium
(Maëlle Salmon’s work).

9

https://r-pkgs.org/
https://happygitwithr.com/
/http-testing/main.epub
https://github.com/alexwhan
https://github.com/eaurele
https://github.com/cderv
https://github.com/dpprdan
https://github.com/dpprdan
https://github.com/Bisaloo
https://github.com/jonthegeek/
https://github.com/llrs
https://github.com/xvrdm
https://ropensci.org
https://www.r-consortium.org/projects/awarded-projects/2020-group-1#HTTP+testing+in+R+Book

10 CHAPTER 1. PREAMBLE

Part I

Introduction

11

Chapter 2

HTTP in R 101

2.1 What is HTTP?

HTTP means HyperText Transport Protocol, but you were probably not just looking
for a translation of the abbreviation. HTTP is a way for you to exchange information
with a remote server. In your package, if information is going back and forth be‑
tween the R session and the internet, you are using some sort of HTTP tooling. Your
package is making requests and receives responses.

2.1.1 HTTP requests

The HTTP request is what your package makes. It has a method (are you fetching
information via GET? are you sending information via POST?), different parts of aURL
(domain, endpoint, query string), and headers (containing for instance your secret
identifiers). It can contain a body. For instance, youmight be sending data as JSON.
In that case one of the headers will describe the content.

Howdoyouknowwhat request tomake fromyour package? Hopefully youare inter‑
acting with a well documented web resource that will explain to you what methods
are associated with what endpoints.

2.1.2 HTTP responses

The HTTP response is what the remote server provides, and what your package
parses. A response has a status code indicating whether the request succeeded,
response headers, and (optionally) a response body.

13

14 CHAPTER 2. HTTP IN R 101

Hopefully the documentation of the web API or web resource you are working with
shows good examples of responses. In any case you’ll find yourself experimenting
with different requests to see what the response “looks like”.

2.1.3 More resources about HTTP

How do you get started with interacting with HTTP in R?

2.1.3.1 General HTTP resources

• Mozilla Developer Network docs about HTTP (recommended in the zine men‑
tioned hereafter)

• (not free) Julia Evans’ Zine “HTTP: Learn your browser’s language!”
• The docs of the web API you are aiming to work with, and a search engine to
understand the words that are new.

2.1.3.2 HTTPwith R

• The docs of the R package you end up choosing!
• Digging into the source code of another package that does similar things.

2.2 HTTP requests in R: what package?

In R, to interact with web resources, it is recommended to use {curl}; or its higher‑
level interfaces {httr} (pronounced hitter or h‑t‑t‑r), {httr2} or {crul}.

Do not use RCurl, because it is not actively maintained!

When writing a package interacting with web resources, you will probably use
{httr2}, {httr} or {crul}.

• {httr} is the most popular and oldest of the three packages, and supports
OAuth. {httr} docs feature a vignette called Best practices for API packages

• {httr2} “is a ground‑up rewrite of httr that provides a pipeable API with an
explicit request object that solves more problems felt by packages that wrap
APIs (e.g. built‑in rate‑limiting, retries, OAuth, secure secrets, and more)” so it
might be a good idea to adopt it rather than {httr} for a new package. It has
a vignette about Wrapping APIs.

• {crul}doesnot supportOAuthbut it uses anobject‑oriented interface,which
you might like. {crul} has a set of clients, or ways to perform requests, that
might be handy. {crul} also has a vignette about API package best practices.

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://wizardzines.com/zines/http/
https://community.rstudio.com/t/pronunciations-of-common-r-terms/1810/15
https://httr.r-lib.org/articles/api-packages.html
https://httr2.r-lib.org/articles/wrapping-apis.html
https://docs.ropensci.org/crul/articles/choosing-a-client.html
https://docs.ropensci.org/crul/articles/best-practices-api-packages.html

2.2. HTTP REQUESTS IN R: WHAT PACKAGE? 15

Below we will try to programmatically access the status of GitHub, the open‑source
platform provided by the company of the same name. We will access the same in‑
formation with {httr2} and {crul} If you decide to try the low‑level curl, feel free
to contribute an example. The internet has enough examples for httr.

github_url <- "https://kctbh9vrtdwd.statuspage.io/api/v2/status.json"

The URL above leaves no doubt as to what format the data is provided in, JSON!

Let’s first use {httr2}.

library("magrittr")
response <- httr2::request(github_url) %>%
httr2::req_perform()

Check the response status
httr2::resp_status(response)

[1] 200

Or in a package you'd write
httr2::resp_check_status(response)

Parse the content
httr2::resp_body_json(response)

$page
$page$id
[1] "kctbh9vrtdwd"
##
$page$name
[1] "GitHub"
##
$page$url
[1] "https://www.githubstatus.com"
##
$page$time_zone
[1] "Etc/UTC"
##
$page$updated_at
[1] "2024-02-02T07:44:51.526Z"
##
##
$status

https://www.githubstatus.com/api/#status

16 CHAPTER 2. HTTP IN R 101

$status$indicator
[1] "none"
##
$status$description
[1] "All Systems Operational"

In case you wonder, the format was obtained from a header
httr2::resp_header(response, "content-type")

[1] "application/json; charset=utf-8"

Now, the same with {crul}.

Create a client and get a response
client <- crul::HttpClient$new(github_url)
response <- client$get()

Check the response status
response$status_http()

<Status code: 200>
Message: OK
Explanation: Request fulfilled, document follows

Or in a package you'd write
response$raise_for_status()

Parse the content
response$parse()

No encoding supplied: defaulting to UTF-8.

[1] "{\"page\":{\"id\":\"kctbh9vrtdwd\",\"name\":\"GitHub\",\"url\":\"https://www.githubstatus.com\",\"time_zone\":\"Etc/UTC\",\"updated_at\":\"2024-02-02T07:44:51.526Z\"},\"status\":{\"indicator\":\"none\",\"description\":\"All Systems Operational\"}}"

jsonlite::fromJSON(response$parse())

No encoding supplied: defaulting to UTF-8.

$page
$page$id
[1] "kctbh9vrtdwd"
##

2.2. HTTP REQUESTS IN R: WHAT PACKAGE? 17

$page$name
[1] "GitHub"
##
$page$url
[1] "https://www.githubstatus.com"
##
$page$time_zone
[1] "Etc/UTC"
##
$page$updated_at
[1] "2024-02-02T07:44:51.526Z"
##
##
$status
$status$indicator
[1] "none"
##
$status$description
[1] "All Systems Operational"

Hopefully these very short snippets give you an idea of what syntax to expect when
choosing one of these packages.

Note that the choice of a package will constrain the HTTP testing tools you can use.
However, the general ideas will remain the same. You could switch your package
backend from, say, {crul} to {httr} without changing your tests, if your tests do
not test too many specificities of internals.

18 CHAPTER 2. HTTP IN R 101

Chapter 3

Graceful HTTP R packages

Based on the previous chapter, your package interacting with a web resource has a
dependency on {curl}, {httr}, {httr2} or {crul}. You have hopefully read the
docs of the dependency you chose, including, in the case of {httr}, {httr2} and
{crul}, the vignette about best practices for HTTP packages. Now, in this chapter
we want to give more tips aimed at making your HTTP R package graceful, part of
which you’ll learn more about in this very book!

Whywrite agracefulHTTPRpackage? First of all, graceful is a nice adjective. Sec‑
ond, graceful is the adjective used in CRAN repository policy “Packages which use
Internet resources should fail gracefully with an informative message if the resource
is not available or has changed (and not give a check warning nor error).” Therefore,
let’s review how to make your R package graceful from this day forward, in success
and in failure.

3.1 Choose the HTTP resource wisely

Firstof all, your lifeand the lifeof yourpackage’suserswill beeasier if thewebservice
you’re wrapping is well maintained and well documented. When you have a choice,
try not to rely on a fragileweb service. Moreover, if you can, try to communicatewith
the API providers (telling them about your package; reporting feature requests and
bug reports in their preferred way).

19

https://cran.r-project.org/web/packages/policies.html

20 CHAPTER 3. GRACEFUL HTTP R PACKAGES

3.2 User‑facing grace (how your package actually
works)

0. If you can, do not request the API every time the user asks for something;
cache data instead. No API call, no API call failure! See the R‑hub blog post
“Caching the results of functions of your R package”. To remember answers
across sessions, see approaches presented in the R‑hub blog post “Persistent
configanddata forRpackages”. Cachingbehavior shouldbewell documented
for users, and there should probably be an expiration time for caches that’s
based on how often data is updated on the remote service.

1. Try to send correct requests by knowing what the API expects and validating
user inputs; at the correct rate.

• For instance, don’t even try interacting with a web API requiring authentica‑
tion if the user does not provide authentication information.

• For limiting rate (not sending too many requests), automatically wait.
If the API docs allow you to define an ideal or maximal rate, set the re‑
quest rate in advance using the ratelimitr package (or, with {httr2},
httr2::req_throttle()).

2. If there’s a status API (a separate API indicatingwhether theweb resource is up
or down), use it. If it tells you the API is down, stop() (or rlang::abort())
with an informative error message.

3. If the API indicates an error, depending on the actual error,

• If the server seems to be having issues, re‑try with an exponential back‑
off. In {httr2} there is httr2::req_retry().

• Otherwise, transform the error into a useful error.
• If you used retry and nothing was sent after the maximal number of re‑
tries, show an informative error message.

That was it for aspects the user will care about. Now, what might be more problem‑
atic for your package’s fate on CRAN are the automatic checks that happen there at
submission and then regularly.

3.3 Graceful vignettes and examples

4. Pre‑compute vignettes in someway. Don’t use them as tests; they are a show‑
case. Of course have a system to prevent them from going stale, maybe even
simple reminders (potentially in the unexported release_questions()
function). Don’t let vignettes run on a system where a failure has bad
consequences.

https://blog.r-hub.io/2021/07/30/cache/
https://blog.r-hub.io/2020/03/12/user-preferences/
https://blog.r-hub.io/2020/03/12/user-preferences/
https://github.com/tarakc02/ratelimitr
https://blog.r-hub.io/2020/04/07/retry-wheel/
https://blog.r-hub.io/2020/04/07/retry-wheel/
https://httr2.r-lib.org/articles/wrapping-apis.html#error-handling-1
https://blog.r-hub.io/2019/04/25/r-devel-linux-x86-64-debian-clang/#cran-checks-101
https://blog.r-hub.io/2020/06/03/vignettes/#how-to-include-a-compute-intensive--authentication-dependent-vignette
https://devtools.r-lib.org/reference/release.html#details
https://devtools.r-lib.org/reference/release.html#details

3.4. GRACEFUL CODE 21

5. Don’t run examples on CRAN. Now, for a first submission, CRAN maintainers
might complain if there is no example. In that case, you might want to add
someminimal example, e.g.

if (crul::ok("some-url")) {
my_fun() # some eg that uses some-url

}

These two precautions ensure that CRAN checks won’t end with some WARNINGs,
e.g. because an example failed when the API was down.

3.4 Graceful code

For simplifying your own life and those of contributors, make sure to re‑use code
in your package by e.g. defining helper functions for making requests, handling re‑
sponses etc. It will make it easier for you to support interactions with more parts
of the web API. Writing DRY (don’t repeat yourself) code means less lines of code to
test, and less API calls to make or fake!

Also, were you to export a function à la gh::gh(), you’ll help users call any endpoint
of the web API even if you haven’t written any high‑level helper for it yet.

3.5 Graceful tests

We’re getting closer to the actual topic of this book!

6. Read the rest of this book! Your tests should ideally run without needing an
actual internet connection nor the API being up. Your tests that do need to in‑
teractwith the API should be skipped onCRAN. testthat::skip_on_cran()
(or skip_if_offline() that skips if the test is run offline or on CRAN)will en‑
sure that.

7. Do not only test “success” behavior! Test for the behavior of your package in
case of API errors, which shall also be covered later in the book.

3.6 Conclusion

In summary, to have a graceful HTTP package, make the most of current best prac‑
tice for the user interface; escape examples and vignettes on CRAN; make tests in‑
dependent of actual HTTP requests. Do not forget CRAN’s “graceful failure” policy is
mostly about ensuring a clean R CMD check result on CRAN platforms (0 ERROR, 0
WARNING, 0 NOTE) even when the web service you’re wrapping has some hiccups.

https://blog.r-hub.io/2020/01/27/examples/

22 CHAPTER 3. GRACEFUL HTTP R PACKAGES

Chapter 4

Packages for HTTP testing

A brief presentation of packages you’ll “meet” again later in this book!

4.1 Why do we need special packages for HTTP test‑
ing?

Packages for HTTP testing are useful because there are challenges to HTTP test‑
ing. Packages for HTTP testing help you solve these challenges, rather than letting
you solve them with some homegrown solutions (you can still choose to do that, of
course).

What are the challenges of HTTP testing?

• Having tests depend on an internet connection is not ideal.
• Having tests depend on having secrets for authentication at hand is not ideal.
• Having tests for situations that are hard to trigger (e.g. the failure of a remote
server) is tricky.

4.2 webmockr

{webmockr}, maintained by Scott Chamberlain, is an R package to help you “mock”
HTTP requests. What does “mock” mean? Mock refers to the fact that we’re faking
the response. Here is how it works:

• You “stub” a request. That is, you set rules for what HTTP request you’d like to
respond to with a fake response. E.g. a rule might be a method, or a URL.

23

24 CHAPTER 4. PACKAGES FOR HTTP TESTING

• You also can set rules for what fake response you’d like to respondwith, if any‑
thing (if nothing, then we give you NULL).

• Then youmake HTTP requests, and those thatmatch your stub i.e. set of rules
will return what you requested be returned.

• While {webmockr} is in use, real HTTP interactions are not allowed. Therefore
you need to stub all possible HTTP requests happening via your code. You’ll
get error messages for HTTP requests not covered by any stub.

• There is no recording interactions to disk at all, just mocked responses given
as the user specifies in the R session.

{webmockr}works with both the {crul} package and the {httr} package.

{webmockr} is quite low‑level and not the first tool you’ll use directly in your day‑
to‑day HTTP testing. Youmay never use it directly but if you use {vcr} it’s one of its
foundations.

{webmockr}was inspired by the Ruby webmock gem.

4.3 What is vcr?

The short version is {vcr}, maintained by Scott Chamberlain, helps you stub HTTP
requests so you don’t have to repeat HTTP requests,mostly in your unit tests. It uses
the power of {webmockr}, with a higher level interface.

When using {vcr} in tests, the first time you run a test, the API response is stored
in a YAML or JSON file. All subsequent runs of the test use that local file instead of
really calling the API. Therefore tests work independently of an internet connection.

{vcr}was inspired by the Ruby vcr gem.

{vcr}works for packages using {httr} or {crul}.

Direct link to {vcr} (& {webmockr}) demo

4.4 What is httptest?

{httptest}, maintained by Neal Richardson, uses mocked API responses (like
{vcr}). It “enables one to test all of the logic on the R sides of the API in your package
without requiring access to the remote service.”

Contrary to {vcr}, {httptest} also lets you define mock files by hand (copying
from API docs, or dumbing down real responses), whereas with {vcr} all mock files
come from recording real interactions (although you can choose to edit {vcr}mock
files after recording).

{httptest}works for packages using {httr}.

https://github.com/bblimke/webmock
https://relishapp.com/vcr/vcr/docs
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html

4.5. WHAT IS HTTPTEST2? 25

Direct link to {httptest} demo

The differences and similarities between {httptest} and {vcr} will become
clearer in the chapters where we provide the whole games for each of them.

4.5 What is httptest2?

{httptest2}, maintainedbyNeal Richardson, is like {httptest}, but for {httr2}.

Direct link to {httptest2} demo

With {vcr}, {httptest} and {httptest2} the tests will use some sort of fake API
responses.

In {vcr} they are called fixtures or cassettes. In {httptest} and {httptest2}
they are calledmock files.

4.6 What is webfakes?

{webfakes}, maintained by Gábor Csárdi, provides an alternative (complemen‑
tary?) tool for HTTP testing. It will let you fake a whole web service, potentially
outputting responses from mock files you’ll have created. It does not help with
recording fake responses. Because it runs a fake web service, you can even interact
with said web service in your browser or with curl in the command line.

{webfakes} works with packages using any HTTP package (i.e. it works with
{curl}, {crul}, {httr}, or {httr2}).

Direct link to {webfakes} demo

4.7 testthat

{testthat}, maintained by HadleyWickham, is not a package specifically for HTTP
testing; it is a package for general‑purpose unit testing of R packages. In this book
we will assume that is what you use, because of its popularity.

If you use an alternative like {tinytest},

• {httptest} won’t work as it’s specifically designed as a complement to
{testthat};

• {vcr}might work;

• {webfakes} can work.

https://github.com/ropensci/vcr/issues/162

26 CHAPTER 4. PACKAGES FOR HTTP TESTING

4.8 Conclusion

Now that you have an idea of the tools we can use for HTTP testing, we’ll now create
a minimal package and then amend it in three versions tested with

• {vcr} and {webmockr};
• {httptest};
• {httptest2};
• {webfakes}.

Our minimal package will use {httr} (except for {httptest2}, where we’ll use
{httr2}). However, it will help you understand concepts even if you end up using
{crul} or {curl}.1

1If you end up using {crul}, you can use {vcr} and {webmockr}; or {webfakes}; but not
{httptest}. If you end up using {curl} you can only use {webfakes}.

Part II

Whole Game(s)

27

Chapter 5

Introduction

Similar to the Whole Game chapter in the R packages book by Hadley Wickham and
JennyBryan,we shall go throughhow toaddHTTP tests to aminimal package. How‑
ever, we will do it three times to present alternative approaches: with vcr, httptest,
webfakes. After that exercise, we shall compare approaches: we will compare both
packages that involve mocking i.e. vcr vs. httptest; and all three HTTP packages in
a last chapter. The next section will then present single topics such as “how to deal
with authentication” in further details.

5.1 Our example packages

Ourminimal packages, exemplighratiaandexemplighratia2, access theGitHub
status API and one endpoint of GitHub V3 REST API. They are named after the Latin
phrase exempli gratia that means “for instance”, with an H for GH. If you really need
to interact with GitHub V3 API, we recommend the gh package. We also recommend
lookingat the sourceof theghpackage, andat thedocsofGitHubV3API, inparticular
about authentication.

Our example packages call web APIs but the tools and concepts are applicable to
packages wrapping any web resource, even poorly documented ones.1

GitHub V3 API works without authentication too, but at a lower rate. For the sake of
having an example of a package requiring authentication we shall assume the API is
not usable without authentication. Authentication is, here, the setting of a token in
a HTTP header (so quite simple, compared to e.g. OAuth).

GitHub Status API, on the contrary, does not necessitate authentication at all.
1An interesting post to read about an R package wrapping an undocumented web API is “One‑Hour

Package” by Neal Richardson.

29

https://r-pkgs.org/whole-game.html
https://r-pkgs.org/whole-game.html
https://github.com/maropensci-bookselle/exemplighratia
https://github.com/ropensci-books/exemplighratia2
https://gh.r-lib.org/
https://developer.github.com/v3/#authentication
https://enpiar.com/2017/08/11/one-hour-package/
https://enpiar.com/2017/08/11/one-hour-package/

30 CHAPTER 5. INTRODUCTION

So we shall create two functions, one that works without authentication, one that
works with authentication.

How did we create the packages? You are obviously free to use your own favorite
workflow tools, but below we share our workflow using the usethis package.

• We followed usethis setup article.

5.1.1 exemplighratia2 (httr2)

Then we ran

• usethis::create_package("path/to/folder/exemplighratia2") to
create and open the package project;

• usethis::use_mit_license() to add an MIT license;
• usethis::use_package("httr2") to add a dependency on httr2;
• usethis::use_package("purrr") to add a dependency on purrr;
• use_r("api-status.R") to add the first function whose code is written be‑
low;

status_url <- function() {
"https://kctbh9vrtdwd.statuspage.io/api/v2/components.json"

}

#' GitHub APIs status
#'
#' @description Get the status of requests to GitHub APIs
#'
#' @importFrom magrittr `%>%`
#'
#' @return A character vector, one of "operational", "degraded_performance",
#' "partial_outage", or "major_outage."
#'
#' @details See details in https://www.githubstatus.com/api#components.
#' @export
#'
#' @examples
#' \dontrun{
#' gh_api_status()
#' }
gh_api_status <- function() {
response <- status_url() %>%
httr2::request() %>%
httr2::req_perform()

https://r-pkgs.org/whole-game.html
https://usethis.r-lib.org/articles/articles/usethis-setup.html

5.1. OUR EXAMPLE PACKAGES 31

Check status
httr2::resp_check_status(response)

Parse the content
content <- httr2::resp_body_json(response)

Extract the part about the API status
components <- content$components
api_status <- components[purrr::map_chr(components, "name") == "API Requests"][[1]]

Return status
api_status$status

}

• use_test("api-status") (and using testthat latest edition so setting
Config/testthat/edition: 3 in DESCRIPTION) to add a simple test whose
code is below.

test_that("gh_api_status() works", {
testthat::expect_type(gh_api_status(), "character")

})

• use_r("organizations.R") to add a second function. Note that an ideal
version of this function would have some sort of callback in the retry, to
call the gh_api_status() function (maybe with httr2::req_retry()’s
is_transient argument).

gh_v3_url <- function() {
"https://api.github.com/"

}

#' GitHub organizations
#'
#' @description Get logins of GitHub organizations.
#'
#' @param since The integer ID of the last organization that you've seen.
#'
#' @return A character vector of at most 30 elements.
#' @export
#'
#' @details Refer to https://developer.github.com/v3/orgs/#list-organizations
#'

https://www.tidyverse.org/blog/2020/10/testthat-3-0-0/#3rd-edition

32 CHAPTER 5. INTRODUCTION

#' @examples
#' \dontrun{
#' gh_organizations(since = 42)
#' }
gh_organizations <- function(since = 1) {

token <- Sys.getenv("GITHUB_PAT")

if (!nchar(token)) {
stop("No token provided! Set up the GITHUB_PAT environment variable please.")

}

response <- httr2::request(gh_v3_url()) %>%
httr2::req_url_path_append("organizations") %>%
httr2::req_url_query(since = since) %>%
httr2::req_headers("Authorization" = paste("token", token)) %>%
httr2::req_retry(max_tries = 3, max_seconds = 120) %>%
httr2::req_perform()

httr2::resp_check_status(response)

content <- httr2::resp_body_json(response)

purrr::map_chr(content, "login")

}

• use_test("organizations") to add a simple test.

test_that("gh_organizations works", {
testthat::expect_type(gh_organizations(), "character")

})

5.1.2 exemplighratia (httr)

Then we ran

• usethis::create_package("path/to/folder/exemplighratia") to
create and open the package project;

• usethis::use_mit_license() to add an MIT license;
• usethis::use_package("httr") to add a dependency on httr;
• usethis::use_package("purrr") to add a dependency on purrr;

5.1. OUR EXAMPLE PACKAGES 33

• usethis::use_r("api-status.R") to add the first function whose code is
written below;

status_url <- function() {
"https://kctbh9vrtdwd.statuspage.io/api/v2/components.json"

}

#' GitHub APIs status
#'
#' @description Get the status of requests to GitHub APIs
#'
#' @return A character vector, one of "operational", "degraded_performance",
#' "partial_outage", or "major_outage."
#'
#' @details See details in https://www.githubstatus.com/api#components.
#' @export
#'
#' @examples
#' \dontrun{
#' gh_api_status()
#' }
gh_api_status <- function() {
response <- httr::GET(status_url())

Check status
httr::stop_for_status(response)

Parse the content
content <- httr::content(response)

Extract the part about the API status
components <- content$components
api_status <- components[purrr::map_chr(components, "name") == "API Requests"][[1]]

Return status
api_status$status

}

• use_test("api-status") (and using testthat latest edition so setting
Config/testthat/edition: 3 in DESCRIPTION) to add a simple test whose
code is below.

https://www.tidyverse.org/blog/2020/10/testthat-3-0-0/#3rd-edition

34 CHAPTER 5. INTRODUCTION

test_that("gh_api_status() works", {
testthat::expect_type(gh_api_status(), "character")

})

• usethis::use_r("organizations.R") to add a second function. Note that
an ideal version of this function would have some sort of callback in the retry,
to call the gh_api_status() function (which seems easier to implementwith
crul’s retry method).

gh_v3_url <- function() {
"https://api.github.com/"

}

#' GitHub organizations
#'
#' @description Get logins of GitHub organizations.
#'
#' @param since The integer ID of the last organization that you've seen.
#'
#' @return A character vector of at most 30 elements.
#' @export
#'
#' @details Refer to https://developer.github.com/v3/orgs/#list-organizations
#'
#' @examples
#' \dontrun{
#' gh_organizations(since = 42)
#' }
gh_organizations <- function(since = 1) {
url <- httr::modify_url(
gh_v3_url(),
path = "organizations",
query = list(since = since)
)

token <- Sys.getenv("GITHUB_PAT")

if (!nchar(token)) {
stop("No token provided! Set up the GITHUB_PAT environment variable please.")

}

response <- httr::RETRY(
"GET",
url,
httr::add_headers("Authorization" = paste("token", token))

https://blog.r-hub.io/2020/04/07/retry-wheel/#retry-in-crul

5.2. CONCLUSION 35

)

httr::stop_for_status(response)

content <- httr::content(response)

purrr::map_chr(content, "login")

}

• use_test("organizations") to add a simple test.

test_that("gh_organizations works", {
testthat::expect_type(gh_organizations(), "character")

})

5.2 Conclusion

All good, nowourpackagehas100%test coverageandpassesRCMDCheck (granted,
our tests could be more thorough, but remember this is a minimal example). But
what if we try working without a connection? In the following chapters, we’ll add
more robust testing infrastructure to this minimal package, and we will do that four
times to compare packages/approaches: once with vcr, once with httptest, once
with httptest2, and once with webfakes.

36 CHAPTER 5. INTRODUCTION

Chapter 6

Use vcr (& webmockr)

In this chapter we aim at adding HTTP testing infrastructure to exemplighratia using
vcr (& webmockr).
Corresponding pull request to exemplighratia. Feel free to fork the repository to ex‑
periment yourself!

6.1 Setup

Before working on all this, we need to install {vcr}.
First, we need to run vcr::use_vcr() (in the exemplighratia directory) which has a
few effects:

• Addingvcr as adependency toDESCRIPTION, underSuggests just like testthat.
• Creating an example test file for us to look at. This is useful the first few times
you setup vcr in another package, after a while you might even delete it with‑
out reading it.

• Adding a .gitattributes file with the line tests/fixtures/**/* -diff
which will hide the changes in your cassettes from the git diff. It makes your
git diff easier to deal with. 1

• Creating a setup file under tests/testthat/helper-vcr.R,

library("vcr")
invisible(vcr::vcr_configure(
dir = vcr::vcr_test_path("fixtures")

))
vcr::check_cassette_names()

1However, if you change something related to handling secrets in your code or tests, please check
again your new cassettes do not include secrets.

37

https://github.com/ropensci-books/exemplighratia/pull/2/files

38 CHAPTER 6. USE VCR (& WEBMOCKR)

When testthat runs tests, files whose name start with “helper” are always run first.
They are also loaded by devtools::load_all(), so the vcr setup is loaded when
developing and testing interactively. See the table in the R‑hub blog post “Helper
code and files for your testthat tests”.

The helper file created by vcr

• loads vcr,
• indicates where mocked responses are saved ("../fixtures" which trans‑
lates, from the root of the package, to tests/fixtures),

• and checks that you are not using the same name twice for cassettes (mock
files).

We have to tweak the vcr setup a bit for our needs.

• We do not want our API token to appear in the mock responses, and we
know it’s used in the Authorization header of the requests, so we use
the filter_request_headers argument of vcr::vcr_configure().
For other secret filtering one can use filter_response_headers and
filter_sensitive_data (for a regular expression purging, on the whole
saved interactions).

• We need to ensure that we set up a fake API key when there is no API token
around. Why? Because if you remember well, the code of our function
gh_organizations() checks for the presence of a token. With mock re‑
sponses around, we don’t need a token but we still need to fool our own
package in contexts where there is no token (e.g. in continuous integration
checks for a fork of a GitHub repository).

Below is the updated setup file saved under tests/testthat/helper-vcr.R.

library("vcr")

vcr_dir <- vcr::vcr_test_path("fixtures")

if (!nzchar(Sys.getenv("GITHUB_PAT"))) {
if (dir.exists(vcr_dir)) {
Fake API token to fool our package
Sys.setenv("GITHUB_PAT" = "foobar")

} else {
If there's no mock files nor API token, impossible to run tests
stop("No API key nor cassettes, tests cannot be run.",

call. = FALSE)
}

}

https://testthat.r-lib.org/reference/test_dir.html#special-files
https://blog.r-hub.io/2020/11/18/testthat-utility-belt/#code-called-in-your-tests
https://blog.r-hub.io/2020/11/18/testthat-utility-belt/#code-called-in-your-tests

6.2. ACTUAL TESTING 39

invisible(vcr::vcr_configure(
dir = vcr_dir,
Filter the request header where the token is sent, make sure you know
how authentication works in your case and read the Security chapter :-)
filter_request_headers = list(Authorization = "My bearer token is safe")

))

So this was just setup, now on to adapting our tests!

6.2 Actual testing

Themost important functionwill bevcr::use_cassette("cassette-informative-and-unique-name",
{code-block}) which tells vcr to create a mock file to store all API responses for
API calls occurring in the code block.

Let’s tweak the test for gh_api_status, it now becomes

test_that("gh_api_status() works", {
vcr::use_cassette("gh_api_status", {
status <- gh_api_status()

})
testthat::expect_type(status, "character")

})

We only had to wrap the code involving interactions with the API, status <-
gh_api_status(), in vcr::use_cassette().

If we run this test (in RStudio clicking on “Run test”),

• the first time, vcr createsacassette (mock file)undertests/testthat/fixtures/gh_api_status.yml
where it stores the API response. It contains all the information related to
requests and responses, headers included.

http_interactions:
- request:

method: get
uri: https://kctbh9vrtdwd.statuspage.io/api/v2/components.json
body:
encoding: ''
string: ''

headers:
Accept: application/json, text/xml, application/xml, */*

response:

40 CHAPTER 6. USE VCR (& WEBMOCKR)

status:
status_code: 200
category: Success
reason: OK
message: 'Success: (200) OK'

headers:
vary: Accept,Accept-Encoding,Fastly-SSL
cache-control: max-age=0, private, must-revalidate
x-cache: MISS
content-type: application/json; charset=utf-8
content-encoding: gzip
strict-transport-security: max-age=259200
date: Thu, 15 Oct 2020 11:59:23 GMT
x-request-id: d9888435-3f04-4401-be5c-b9d1bfdfa015
x-download-options: noopen
x-xss-protection: 1; mode=block
x-runtime: '0.037254'
x-permitted-cross-domain-policies: none
access-control-allow-origin: '*'
accept-ranges: bytes
x-content-type-options: nosniff
etag: W/"gz[a479c9894f51b7db286dc31cd922e7bf]"
x-statuspage-skip-logging: 'true'
x-statuspage-version: fd137a4bb14c20ce721393e5b6540ea6eebff3a3
referrer-policy: strict-origin-when-cross-origin
age: '0'

body:
encoding: UTF-8
file: no
string: '{"page":{"id":"kctbh9vrtdwd","name":"GitHub","url":"https://www.githubstatus.com","time_zone":"Etc/UTC","updated_at":"2020-10-15T08:57:35.302Z"},"components":[{"id":"8l4ygp009s5s","name":"Git
Operations","status":"operational","created_at":"2017-01-31T20:05:05.370Z","updated_at":"2020-09-24T02:32:00.916Z","position":1,"description":"Performance
of git clones, pulls, pushes, and associated operations","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"brv1bkgrwx7q","name":"API
Requests","status":"operational","created_at":"2017-01-31T20:01:46.621Z","updated_at":"2020-09-30T19:00:29.476Z","position":2,"description":"Requests
for GitHub APIs","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"4230lsnqdsld","name":"Webhooks","status":"operational","created_at":"2019-11-13T18:00:24.256Z","updated_at":"2020-10-13T14:51:17.928Z","position":3,"description":"Real
time HTTP callbacks of user-generated and system events","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"0l2p9nhqnxpd","name":"Visit
www.githubstatus.com for more information","status":"operational","created_at":"2018-12-05T19:39:40.838Z","updated_at":"2020-04-02T21:56:21.954Z","position":4,"description":null,"showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"kr09ddfgbfsf","name":"Issues","status":"operational","created_at":"2017-01-31T20:01:46.638Z","updated_at":"2020-10-10T00:02:16.199Z","position":5,"description":"Requests
for Issues on GitHub.com","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"hhtssxt0f5v2","name":"Pull
Requests","status":"operational","created_at":"2020-09-02T15:39:06.329Z","updated_at":"2020-10-10T00:02:49.033Z","position":6,"description":"Requests
for Pull Requests on GitHub.com","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"br0l2tvcx85d","name":"GitHub
Actions","status":"operational","created_at":"2019-11-13T18:02:19.432Z","updated_at":"2020-10-13T20:23:36.040Z","position":7,"description":"Workflows,
Compute and Orchestration for GitHub Actions","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"st3j38cctv9l","name":"GitHub
Packages","status":"operational","created_at":"2019-11-13T18:02:40.064Z","updated_at":"2020-09-08T15:50:32.845Z","position":8,"description":"API
requests and webhook delivery for GitHub Packages","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false},{"id":"vg70hn9s2tyj","name":"GitHub
Pages","status":"operational","created_at":"2017-01-31T20:04:33.923Z","updated_at":"2020-10-10T00:02:38.220Z","position":9,"description":"Frontend
application and API servers for Pages builds","showcase":false,"start_date":null,"group_id":null,"page_id":"kctbh9vrtdwd","group":false,"only_show_if_degraded":false}]}'

6.2. ACTUAL TESTING 41

recorded_at: 2020-10-15 11:59:23 GMT
recorded_with: vcr/0.5.4, webmockr/0.7.0

• all the times after that, unless we delete the mock file, vcr simply uses the
mock files instead of actually calling the API.

Let’s tweak our other test, of gh_organizations(). Here things get more
exciting or complicated, as we also set out to adding a test of the error be‑
havior. This inspired us to change error behavior a bit with a slightly more
specific error message i.e. httr::stop_for_status(response) became
httr::stop_for_status(response, task = "get data from the API,
oops").

The test file tests/testthat/test-organizations.R is now:

test_that("gh_organizations works", {
vcr::use_cassette("gh_organizations", {
orgs <- gh_organizations()

})
testthat::expect_type(orgs, "character")

})

test_that("gh_organizations errors when the API doesn't behave", {
webmockr::enable()
stub <- webmockr::stub_request("get", "https://api.github.com/organizations?since=1")
webmockr::to_return(stub, status = 502)
expect_error(gh_organizations(), "oops")
webmockr::disable()

})

The first test is similar towhatwedid for gh_api_status(). In the second test there
is more to unpack.

• Weenable theuseof {webmockr}at thebeginningwithwebmockr::enable().
Why webmockr? Because it can help mock a failure scenario.

• Weexplicitlywrite thata request tohttps://api.github.com/organizations?since=1
should return a status of 502.

stub <- webmockr::stub_request("get", "https://api.github.com/organizations?since=1")
webmockr::to_return(stub, status = 502)

• We then test for theerrormessagewithexpect_error(gh_organizations(),
"oops").

• We disable webmockr with webmockr::disable().

42 CHAPTER 6. USE VCR (& WEBMOCKR)

Instead of using webmockr for creating a fake API eror, we could have

• recorded a normal cassette;
• edited it to replace the status code.

Read pros and cons of this approach in the vcr vignette Why and how edit your vcr
cassettes?, especially if you don’t find the webmockr approach enjoyable.
Without the HTTP testing infrastructure, testing for behavior of the package in case
of API errors would bemore difficult.
Regarding our secret API token, the first time we run the test file, vcr creates a cas‑
sette where we notice these lines

http_interactions:
- request:

method: get
uri: https://api.github.com/organizations?since=1
body:

encoding: ''
string: ''

headers:
Accept: application/json, text/xml, application/xml, */*
Content-Type: ''
Authorization: My bearer token is safe

OurAPI tokenhasbeen replacedwith thestringwe indicated invcr::vcr_configure(),
My bearer token is safe.

6.3 Also testing for real interactions

What if the API responses change? Hopefully we’d notice that thanks to following
API news. However, sometimes web APIs change without any notice. Therefore it is
important to run tests against the real web service once in a while.
The vcr package provides various methods to turn vcr use on and off to allow real
requests i.e. ignoring mock files. See ?vcr::lightswitch.
In the case of exemplighratia, we added a GitHub Actions workflow that will run
on schedule once a week, for which one of the build has vcr turned off via the
VCR_TURN_OFF environment variable. We chose to have one build with vcr turned
on and otherwise the same configuration to make it easier to assess what broke in
case of failure (if both builds fail, the web API is probably not the culprit). Compared
to continuous integration buildswhere vcr is turned on, this one build needs to have
access to a GITHUB_PAT secret environment variable. Furthermore, it is slower.
One could imagine other strategies:

https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://github.com/ropensci-books/exemplighratia/blob/vcrtest/.github/workflows/R-CMD-check-real-requests.yaml

6.4. SUMMARY 43

• Always having one continuous integration build with vcr turned off but skip‑
ping it in contexts where there isn’t any token (pull requests from forks for in‑
stance?);

• Only running tests with vcr turned off locally once in a while.

6.4 Summary

• We set up vcr usage in our package exemplighratia by running use_vcr() and
tweaking the setup file to protect our secret API key and to fool our own pack‑
age that needs an API token.

• Insidetest_that()blocks,wewrappedpartsof thecode intovcr::use_cassette()
and ran the tests a first time to generate mock files that hold all information
about the API interactions.

• In one of the tests, we used webmockr to create an environment where only
fake requestsareallowed. Wedefined that the request thatgh_organizations()
makes should get a 502 status. We were therefore able to test for the error
message gh_organizations() returns in such cases.

Now, how do wemake sure this works?

• Turn off wifi, run the tests again. It works! Turn on wifi again.
• Open .Renviron (usethis::edit_r_environ()), edit “GITHUB_PAT”
into “byeGITHUB_PAT”, re‑start R, run the tests again. It works! Fix your
“GITHUB_PAT” token in .Renviron.

So we now have tests that no longer rely on an internet connection nor on having
API credentials.

We also added a continuous integration workflow for having a build using real inter‑
actions once every week, as it is important to regularly make sure the package still
works against the latest API responses.

For the full list of changes applied to exemplighratia in this chapter, see the pull re‑
quest diff on GitHub.

How do we get there with other packages? Let’s try httptest in the next chapter!

6.5 PS: Where to put use_cassette()

Where do we put the vcr::use_cassette() call? Well, as written in the manual
page of that function, There’s a few ways to get correct line numbers for failed tests
and one way to not get correct line numbers: What’s correct?

https://github.com/ropensci-books/exemplighratia/pull/2/files
https://github.com/ropensci-books/exemplighratia/pull/2/files

44 CHAPTER 6. USE VCR (& WEBMOCKR)

• Wrapping thewhole testthat::test_that() call (do not do that if your test
contains for instance ‘skip_on_cran()“);

vcr::use_cassette("thing", {
testthat::test_that("thing", {

lala <- get_foo()
expect_true(lala)

})
})

• Wrapping a few lines inside testthat::test_that() excluding the expec‑
tations expect_blabla()

testthat::test_that("thing", {
vcr::use_cassette("thing", {
lala <- get_foo()

})
expect_true(lala)

})

What’s incorrect?

testthat::test_that("thing", {
vcr::use_cassette("thing", {
lala <- get_foo()
expect_true(lala)

})
})

Weused thesolutionofonlywrapping the linescontainingAPI calls invcr::use_cassette(),
but it is up to you to choose what you prefer.

Chapter 7

Use httptest

In this chapter we aim at adding HTTP testing infrastructure to exemplighratia using
httptest. For this, we start from the initial state of exemplighratia again. Back to
square one!
Note that the httptest::with_mock_dir() function is only available in httptest
version >= 4.0.0 (released on CRAN on 2021‑02‑01).
Corresponding pull request to exemplighratia Feel free to fork the repository to ex‑
periment yourself!

7.1 Setup

Before working on all this, we need to install {httptest}.
First, we need to run httptest::use_httptest()which has a few effects:

• Adding httptest as a dependency to DESCRIPTION, under Suggests just like
testthat.

• Creating a setup file under tests/testthat/setup,

library(httptest)

When testthat runs tests, files whose name starts with “setup” are always run first.
The setup file added by httptest loads httptest.
We shall tweak it a bit to fool our package into believing there is an API token around
in contexts where there is not. Since tests will use recorded responses when we are
not recording, we do not need an actual API token when not recording, but we need
gh_organizations() to not stop because Sys.getenv("GITHUB_PAT") returns
nothing.

45

https://github.com/ropensci-books/exemplighratia/pull/9/files
https://testthat.r-lib.org/reference/test_dir.html#special-files

46 CHAPTER 7. USE HTTPTEST

library(httptest)

for contexts where the package needs to be fooled
(CRAN, forks)
this is ok because the package will used recorded responses
so no need for a real secret
if (!nzchar(Sys.getenv("GITHUB_PAT"))) {
Sys.setenv(GITHUB_PAT = "foobar")

}

So this was just setup, now on to adapting our tests!

7.2 Actual testing

The key function will be httptest::with_mock_dir("dir", {code-block})
which tells httptest to create mock files under tests/testthat/dir to store all
API responses for API calls occurring in the code block. We are allowed to tweak the
mock files by hand, and we will do that in some cases.

Let’s tweak the test file for gh_status_api, it becomes

with_mock_dir("gh_api_status", {
test_that("gh_api_status() works", {
testthat::expect_type(gh_api_status(), "character")
testthat::expect_equal(gh_api_status(), "operational")

})
})

We only had to wrap the whole test in httptest::with_mock_dir().

If we run this test (in RStudio clicking on “Run test”),

• the first time, httptest createsamock fileundertests/testthat/gh_api_status/kctbh9vrtdwd.statuspage.io/api/v2/components.json.json
where it stores the API response. We however dumbed it down by hand, to

{"components":[{"name":"API Requests","status":"operational"}]}

• all the times after that, httptest simply uses the mock file instead of actually
calling the API.

Let’s tweak our other test, of gh_organizations().

Here things get more exciting or complicated, as we also set out to adding a test of
the error behavior. This inspired us to change error behavior a bit with a slightly

7.2. ACTUAL TESTING 47

more specific error message i.e. httr::stop_for_status(response) became
httr::stop_for_status(response, task = "get data from the API,
oops").

The test file tests/testthat/test-organizations.R is now:

with_mock_dir("gh_organizations", {
test_that("gh_organizations works", {
testthat::expect_type(gh_organizations(), "character")

})
})

with_mock_dir("gh_organizations_error", {
test_that("gh_organizations errors if the API doesn't behave", {

testthat::expect_error(gh_organizations())
})

},
simplify = FALSE)

The first test is similar to what we did for gh_api_status() except we didn’t touch
the mock file this time, out of laziness. In the second test there is more to unpack:
how do we get a mock file corresponding to an error?

• We first run the test as is. It fails because there is no error, which we expected.
Note the simplify = FALSE that means the mock file also contains headers
for the response.

• We replaced 200Lwith 502L and removed the body, to end upwith a very sim‑
plemock fileundertests/testthat/gh_organizations_error/api.github.com/organizations-5377e8.R

structure(list(url = "https://api.github.com/organizations?since=1",
status_code = 502L, headers = NULL), class = "response")

• We re‑run the tests. We got the expected error message.

Without the HTTP testing infrastructure, testing for behavior of the package in case
of API errors would bemore difficult.

Regarding our secret API token, since httptest doesn’t save the requests, and since
the responses don’t contain the token, it is safe without our making any effort.

In this demo we used httptest::with_mock_dir() but there are other ways to
use httptest, e.g. using httptest::with_mock_api() that does not require nam‑
ing a directory (you’d still need to use a separate directory for mocking the error re‑
sponse).

Find out more in the main httptest vignette.

https://enpiar.com/r/httptest/articles/httptest.html

48 CHAPTER 7. USE HTTPTEST

7.3 Also testing for real interactions

What if the API responses change? Hopefully we’d notice that thanks to following
API news. However, sometimes web APIs change without any notice. Therefore it is
important to run tests against the real web service once in a while.

As with vcr we setup a GitHub Actions workflow that runs once a week with tests
against the real web service. The difference is what and where these tests are. As
some tests with custom made mock files can be more specific (e.g. testing for ac‑
tual values, whereas the latest responses from the API will have different values),
instead of turning offmock files usage, we use our old original tests that we put in a
folder called real-tests. Most of the time real-tests is .Rbuildignored but in the
scheduled run, before checking the package we replace the content of tests with
real-tests. An alternativewould be to use testthat::test_dir() on that direc‑
tory but in case of failures wewould not get artifacts as we dowith R CMD check (at
least not without further effort).

Again, one could imagine other strategies, but in all cases it is important to keep
checking the package against the real web service fairly regularly.

7.4 Summary

• We set up httptest usage in our package exemplighratia by running
use_httptest() and tweaking the setup file to fool our own package
that needs an API token.

• We wrapped test_that() into httptest::with_mock_dir() and ran the
tests a first time to generatemock files that hold all information about the API
responses. In some cases wemodified thesemock files tomake them smaller
or to make them correspond to an API error.

Now, how do wemake sure this works?

• Turn off wifi, run the tests again. It works! Turn on wifi again.
• Open .Renviron (usethis::edit_r_environ()), edit “GITHUB_PAT”
into “byeGITHUB_PAT”, re‑start R, run the tests again. It works! Fix your
“GITHUB_PAT” token in .Renviron.

So we now have tests that no longer rely on an internet connection nor on having
API credentials.

We also added a continuous integration workflow for having a build using real inter‑
actions once every week, as it is important to regularly make sure the package still
works against the latest API responses.

https://github.com/ropensci-books/exemplighratia/blob/otherhttptestapproach/.github/workflows/R-CMD-check-schedule.yaml

7.4. SUMMARY 49

For the full list of changes applied to exemplighratia in this chapter, see the pull re‑
quest diff on GitHub.

Howdoweget therewith yet another package? We’ll trywebfakes but first let’s com‑
pare vcr and httptest as they both use mocking.

https://github.com/ropensci-books/exemplighratia/pull/9/files
https://github.com/ropensci-books/exemplighratia/pull/9/files

50 CHAPTER 7. USE HTTPTEST

Chapter 8

vcr and httptest

We have just followed very similar processes to add HTTP testing infrastructure in‑
volving mock files to exemplighratia

• Adding a package as a Suggests dependency;
• Creating a helper file that in particular loads this package before each test;
• Tweaking tests, in some cases wrapping our tests into functions that allows to
record API responses inmock files and to play themback from saidmock files;
in other cases (only with httptest), creating mock files ourselves.

Now, there were a few differences. We won’t end up advocating for one package in
particular since both have their merits, but we do hope to help you differentiate the
two packages.

8.1 Setting up the infrastructure

Tosetup theHTTPtesting infrastructure, inonecaseyouneed to runvcr::use_vcr()
and in another case you need to run httptest::use_httptest(). Not too hard to
remember.

8.2 Callingmock files

As mentioned before, vcr and httptest both use mock files but they call them differ‑
ently.

In vcr they are called both fixtures and cassettes. In httptest they are calledmock
files. Note that fixtures is not as specific as cassettes and mock files: cassettes and

51

52 CHAPTER 8. VCR AND HTTPTEST

mock files are fixtures, but anything (a csv file of input for instance) you use to con‑
sistently test your package is a fixture.

8.3 Namingmock files

Withvcr theuse_cassette() call needs to includeanamethatwill beused tocreate
the filename of the mock file. The help of ?use_cassette explains some criteria
for naming them, such as the fact that cassette names need to be unique. Now if
you wrap your whole test_that() block in them youmight just as well use a name
similar to the test name, and you already make those meaningful, right?

With httptest the mock filepaths are translated from requests according to several
rules that incorporate the request method, URL, query parameters, and body. If you
usewith_mock_dir() youneedaname for thedirectoryunderwhich themock files
are saved, and you canmake it meaningful.

Also note that with vcr one file can (but does not have to) contain several HTTP in‑
teractions (requests and responses) whereas with httptest one file contains one re‑
sponse only (and the filename helps matching it to a request).

8.4 Matching requests

With httptest as the mock file name includes everything that’s potentially varying
about a request, eachmock file corresponds to one request only.

With vcr, therearedifferentpossible configurations formatchinga request toa saved
interaction but by default you can mostly expect that one saved interaction corre‑
sponds to one request only.

8.5 Handling secrets

With vcr, since everything from the HTTP interactions is recorded, you always need
to add some sort of configuration to be sure to wipe your API tokens from the mock
files.

With httptest, only responses are saved, and most often, only their bodies. Most of‑
ten, responses don’t contain secrets e.g. they don’t contain your API token. If the
response contains secrets, refer to httptest’s article about “Redacting sensitive in‑
formation”.

https://docs.ropensci.org/vcr/articles/request_matching.html
https://docs.ropensci.org/vcr/articles/request_matching.html
https://enpiar.com/r/httptest/articles/redacting.html
https://enpiar.com/r/httptest/articles/redacting.html

8.6. RECORDING, PLAYING BACK 53

8.6 Recording, playing back

When using mock files for testing, first you need to record responses in mock files;
and then youwant to use themock files instead of real HTTP interactions (that’s the
whole point).
With vcr, the recording vs playing back modes happen automatically depending on
the existence of the cassette. If you write vcr::use_cassette("blabla",) and
there’s no cassette called blabla, vcr will create it. Note that if you change the HTTP
interactions in the code block, you’ll have to re‑record the cassette which is as sim‑
ple as deleting it then running the test. Note that you can also change the way vcr
behaves by looking into ?vcr::vcr_configure’s “Cassette Options”.
With httptest, there is a lot of flexibility around how to record mock files. It is be‑
cause httptest doesn’t assume that every API mock came from a real request to a
real server; maybe you copy some of the mocks directly from the API docs.
Note that nothing prevents you from editing vcr cassettes by hand, but you’ll
have to be careful not re‑recording them bymistake.
httptest flexiblity comes from original design principles of httptest

“[httptest] doesn’t assume that every API mock came from a real request
to a real server, and it is designed so that you are able to see and modify
test fixtures. Among the considerations:
1. In many cases, API responses contain way more content than is neces‑
sary to test your R code around them: 100 records when 2 will suffice, re‑
quest metadata that you don’t care about and can’t meaningfully assert
things about, and so on. In the interest of minimally reproducible exam‑
ples, and of making tests readable, it oftenmakes sense to take an actual
API response and delete a lot of its content, or even to fabricate one en‑
tirely.
2. And then it’s good to keep that APImock fixed so you knowexactlywhat
is in it. If I re‑recorded a Twitter API response of, say, the most recent 10
tweets with #rstats, the specific content will change every time I record it,
so my tests can’t say much about what is in the response without having
to rewrite them every time too.
3. Some conditions (rate limiting, server errors, e.g.) are difficult to test
with real responses, but if you can hand‑create a API mock with, say, a
503 response status code and test how your code handles it, you can have
confidence of how your package will respond when that rare event hap‑
pens with the real API.
4. Re‑recording all responses can make for a huge code diff, which can
blow up your repository size and make code review harder.”

Now, creating mock files by hand (or inventing some custom scripts to create them)
involves more elbow grease, so it’s a compromise.

https://github.com/nealrichardson/httptest/issues/40#issuecomment-708672654

54 CHAPTER 8. VCR AND HTTPTEST

8.7 Testing for API errors

In your test suite you probably want to check how things go if the server returns 502
or so, and you cannot trigger such a response to record it.

With httptest, to test for API errors, you need to create one or several fake mock
file(s). The easiest way to do that might be to use httptest::with_mock_dir()
that will create mock files with the expected filenames and locations, that you can
then tweak. Or reading the error message of httptest::with_mock_ap() helps
you knowwhere to create a mock file.

With vcr, you either

• use webmockr as we showed in our demo. On the one hand it’s more com‑
pact than creating a fake mock file, on the other hand it’s a way to test that’s
different from the vcr cassette.

test_that("gh_organizations errors when the API doesn't behave", {
webmockr::enable()
stub <- webmockr::stub_request("get", "https://api.github.com/organizations?since=1")
webmockr::to_return(stub, status = 502)
expect_error(gh_organizations(), "oops")
webmockr::disable()

})

• or you edit a cassette by hand which would be similar to testing for API
errors with httptest. If you did that, you’d need to skip the test when vcr
is off, as when vcr is off real requests are made. For that you can use
vcr::skip_if_vcr_off().

8.8 Conclusion

Both vcr and httptest are similar packages in that they use mock files for allowing
easier HTTP testing. They are a bit different in their design philosophy and features,
which might help you choose one of them.

And now, to make things even more complex, or fun, we shall explore a third HTTP
testing package that does not mock requests but instead spins up a local fake web
service.

Chapter 9

Use httptest2

In this chapterweaimataddingHTTP testing infrastructure toexemplighratia2using
httptest2. For this, we start from the initial state of exemplighratia2 again. Back to
square one!

Corresponding pull request to exemplighratia2 Feel free to fork the repository to ex‑
periment yourself!

9.1 Setup

Before working on all this, we need to install {httptest2}.

First, we need to run httptest2::use_httptest2()which has a few effects:

• Adding httptest2 as a dependency to DESCRIPTION, under Suggests just like
testthat.

• Creating a setup file under tests/testthat/setup,

library(httptest2)

When testthat runs tests, files whose name starts with “setup” are always run first.
The setup file added by httptest2 loads httptest2.

We shall tweak it a bit to fool our package into believing there is an API token around
in contexts where there is not. Since tests will use recorded responses when we are
not recording, we do not need an actual API token when not recording, but we need
gh_organizations() to not stop because Sys.getenv("GITHUB_PAT") returns
nothing.

55

https://github.com/ropensci-books/exemplighratia2/pull/1/files
https://testthat.r-lib.org/reference/test_dir.html#special-files

56 CHAPTER 9. USE HTTPTEST2

library(httptest2)

for contexts where the package needs to be fooled
(CRAN, forks)
this is ok because the package will used recorded responses
so no need for a real secret
if (!nzchar(Sys.getenv("GITHUB_PAT"))) {
Sys.setenv(GITHUB_PAT = "foobar")

}

So this was just setup, now on to adapting our tests!

9.2 Actual testing

The key function will be httptest2::with_mock_dir("dir", {code-block})
which tells httptest to create mock files under tests/testthat/dir to store all
API responses for API calls occurring in the code block. We are allowed to tweak the
mock files by hand, and we will do that in some cases.

Let’s tweak the test file for gh_status_api, it becomes

with_mock_dir("gh_api_status", {
test_that("gh_api_status() works", {
testthat::expect_type(gh_api_status(), "character")
testthat::expect_equal(gh_api_status(), "operational")

})
})

We only had to wrap the whole test in httptest2::with_mock_dir().

If we run this test (in RStudio clicking on “Run test”),

• the first time, httptest2createsamock fileundertests/testthat/gh_api_status/kctbh9vrtdwd.statuspage.io/api/v2/components.json.json
where it stores the API response. We however dumbed it down by hand, to

{"components":[{"name":"API Requests","status":"operational"}]}

• all the times after that, httptest2 simply uses the mock file instead of actually
calling the API.

Let’s tweak our other test, of gh_organizations().

Here things get more exciting or complicated, as we also set out to adding a
test of the error behavior. This inspired us to change error behavior a bit with a

9.2. ACTUAL TESTING 57

slightly more specific error message i.e. httr2::resp_check_status(response)
became httr2::resp_check_status(response, info = "Oops, try again
later?").
The test file tests/testthat/test-organizations.R is now:

with_mock_dir("gh_organizations", {
test_that("gh_organizations works", {
testthat::expect_type(gh_organizations(), "character")

})
})

with_mock_dir("gh_organizations_error", {
test_that("gh_organizations errors if the API doesn't behave", {

testthat::expect_snapshot_error(gh_organizations())
})

},
simplify = FALSE)

The first test is similar to what we did for gh_api_status() except we didn’t touch
the mock file this time, out of laziness. In the second test there is more to unpack:
how do we get a mock file corresponding to an error?

• We first run the test as is. It fails because there is no error, which we expected.
Note the simplify = FALSE that means the mock file also contains headers
for the response.

• We replaced 200Lwith 502L and removed the body, to end up with a simpler
mock fileundertests/testthat/gh_organizations_error/api.github.com/organizations-5377e8.R

structure(list(method = "GET", url = "https://api.github.com/organizations?since=1",
status_code = 502L, headers = structure(list(server = "GitHub.com",

date = "Thu, 17 Feb 2022 12:40:29 GMT", `content-type` = "application/json; charset=utf-8",
`cache-control` = "private, max-age=60, s-maxage=60",
vary = "Accept, Authorization, Cookie, X-GitHub-OTP",
etag = "W/\"d56e867402a909d66653b6cb53d83286ba9a16eef993dc8f3cb64c43b66389f4\"",
`x-oauth-scopes` = "gist, repo, user, workflow", `x-accepted-oauth-scopes` = "",
`x-github-media-type` = "github.v3; format=json", link = "<https://api.github.com/organizations?since=3428>; rel=\"next\", <https://api.github.com/organizations{?since}>; rel=\"first\"",
`x-ratelimit-limit` = "5000", `x-ratelimit-remaining` = "4986",
`x-ratelimit-reset` = "1645104327", `x-ratelimit-used` = "14",
`x-ratelimit-resource` = "core", `access-control-expose-headers` = "ETag, Link, Location, Retry-After, X-GitHub-OTP, X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Used, X-RateLimit-Resource, X-RateLimit-Reset, X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval, X-GitHub-Media-Type, X-GitHub-SSO, X-GitHub-Request-Id, Deprecation, Sunset",
`access-control-allow-origin` = "*", `strict-transport-security` = "max-age=31536000; includeSubdomains; preload",
`x-frame-options` = "deny", `x-content-type-options` = "nosniff",
`x-xss-protection` = "0", `referrer-policy` = "origin-when-cross-origin, strict-origin-when-cross-origin",
`content-security-policy` = "default-src 'none'", vary = "Accept-Encoding, Accept, X-Requested-With",
`content-encoding` = "gzip", `x-github-request-id` = "A4BA:12D5C:178438:211160:620E423C"), class = "httr2_headers"),

body = charToRaw("")), class = "httr2_response")

58 CHAPTER 9. USE HTTPTEST2

• We re‑run the tests. We got the expected error message.

Without the HTTP testing infrastructure, testing for behavior of the package in case
of API errors would bemore difficult.

Regarding our secret API token, since httptest2 doesn’t save the requests1, and since
the responses don’t contain the token, it is safe without our making any effort.

In this demo we used httptest2::with_mock_dir() but there are other ways to
usehttptest2, e.g. usinghttptest2::with_mock_api() thatdoesnot requirenam‑
ing a directory (you’d still need to use a separate directory for mocking the error re‑
sponse).

Find out more in the main httptest2 vignette.

9.3 Also testing for real interactions

What if the API responses change? Hopefully we’d notice that thanks to following
API news. However, sometimes web APIs change without any notice. Therefore it is
important to run tests against the real web service once in a while.

One could use the same strategy as the one we demonstrated for httptest i.e. with a
different test folder.

Again, one could imagine other strategies, but in all cases it is important to keep
checking the package against the real web service fairly regularly.

9.4 Summary

• We set up httptest2 usage in our package exemplighratia by running
use_httptest2() and tweaking the setup file to fool our own package that
needs an API token.

• We wrapped test_that() into httptest2::with_mock_dir() and ran the
tests a first time to generatemock files that hold all information about the API
responses. In some cases wemodified thesemock files tomake them smaller
or to make them correspond to an API error.

Now, how do wemake sure this works?

• Turn off wifi, run the tests again. It works! Turn on wifi again.
• Open .Renviron (usethis::edit_r_environ()), edit “GITHUB_PAT”
into “byeGITHUB_PAT”, re‑start R, run the tests again. It works! Fix your
“GITHUB_PAT” token in .Renviron.

1httr2_response objects, unlike the equivalent in httr, don’t include the request.

https://enpiar.com/httptest2/articles/httptest2.html

9.4. SUMMARY 59

So we now have tests that no longer rely on an internet connection nor on having
API credentials.

We also added a continuous integration workflow for having a build using real inter‑
actions once every week, as it is important to regularly make sure the package still
works against the latest API responses.

For the full list of changes applied to exemplighratia in this chapter, see the pull re‑
quest diff on GitHub.

How do we get there with yet another package? We’ll try webfakes.

https://github.com/ropensci-books/exemplighratia/pull/9/files
https://github.com/ropensci-books/exemplighratia/pull/9/files

60 CHAPTER 9. USE HTTPTEST2

Chapter 10

Use webfakes

In this chapter we aim at adding HTTP testing infrastructure to exemplighratia using
webfakes.

10.1 Setup

Beforeworkingonall this,weneed to install{webfakes}, withinstall.packages("webfakes").

Then, we need to add webfakes as a Suggests dependency of our package, poten‑
tially via running usethis::use_package("webfakes", type = "Suggests").

Last but not least, we create a setup file at tests/testthat/setup.R. When test‑
that runs tests, files whose name starts with “setup” are always run first. We need to
ensure that we set up a fake API key when there is no API token around. Why? Be‑
cause if you remember well, the code of our function gh_organizations() checks
for thepresenceofa token. Whenusingourown fakewebservice,weobviouslydon’t
really need a token butwe still need to fool our ownpackage in contextswhere there
is no token (e.g. in continuous integration checks for a fork of a GitHub repository).

if(!nzchar(Sys.getenv("REAL_REQUESTS"))) {
Sys.setenv("GITHUB_PAT" = "foobar")

}

The setup file could also load webfakes, but in our demo we will namespace web‑
fakes functions instead.

61

https://testthat.r-lib.org/reference/test_dir.html#special-files

62 CHAPTER 10. USE WEBFAKES

10.2 Actual testing

Withwebfakeswewill be spinning local fakeweb services thatwewillwant our pack‑
age to interact with instead of the real APIs. Therefore, we first need to amend the
code of functions returning URLs to services to be able to change them via an envi‑
ronment variable. They become:

status_url <- function() {

env_url <- Sys.getenv("EXEMPLIGHRATIA_GITHUB_STATUS_URL")

if (nzchar(env_url)) {
return(env_url)

}

"https://kctbh9vrtdwd.statuspage.io/api/v2/components.json"
}

and

gh_v3_url <- function() {

api_url <- Sys.getenv("EXEMPLIGHRATIA_GITHUB_API_URL")

if (nzchar(api_url)) {
return(api_url)

}

"https://api.github.com/"
}

Having these two switches is crucial.

Then, let’s tweak our test of gh_api_status().

test_that("gh_api_status() works", {
if (!nzchar(Sys.getenv("REAL_REQUESTS"))) {
app <- webfakes::new_app()

app$get("/", function(req, res) {
res$send_json(
list(components =
list(

list(
name = "API Requests",
status = "operational"

10.2. ACTUAL TESTING 63

)
)
),
auto_unbox = TRUE

)
})

web <- webfakes::local_app_process(app, start = TRUE)
web$local_env(list(EXEMPLIGHRATIA_GITHUB_STATUS_URL = "{url}"))

}

testthat::expect_type(gh_api_status(), "character")
})

So what’s happening here?

• When we’re not asking for requests to the real service to be made
(Sys.getenv("REAL_REQUESTS")),weprepareanewappviawebfakes::new_app().
It’s a very simple one, that returns, for GET requests, a list corresponding
to what we’re used to getting out of the status API, except that a) it’s much
smaller and b) the “operational” status is hard‑coded.

• When then create a local app process via webfakes::local_app_process(,
start = TRUE). It will start right away thanks to start=TRUE but
we could have chosen to start it later via calling e.g. web$url() (see
?webfakes::local_app_process); and most importantly it will be stopped
automatically after the test. Nomess made!

• We set the EXEMPLIGHRATIA_GITHUB_STATUS_URL variable to the URL of the
local app process. This is what connects our code to our fake web service.

It might seem like a lot of overhead code but

• It means no real requests are made which is our ultimate goal.
• We will get used to it.
• We can write helper code in a testthat helper file to not repeat ourselves in
further test files; there could even be an app shared between all test files de‑
pending on your package.

Now, let’s adda test for error behavior. This inspiredus to changeerrorbehavior abit
withaslightlymorespecific errormessage i.e.httr::stop_for_status(response)
became httr::stop_for_status(response, task = "get API status,
ouch!").

test_that("gh_api_status() errors when the API does not behave", {
app <- webfakes::new_app()
app$get("/", function(req, res) {

64 CHAPTER 10. USE WEBFAKES

res$send_status(502L)
})
web <- webfakes::local_app_process(app, start = TRUE)
web$local_env(list(EXEMPLIGHRATIA_GITHUB_STATUS_URL = "{url}"))
testthat::expect_error(gh_api_status(), "ouch")

})

It’s a similar process to the earlier test:

• setting up a new app;
• having it return something we chose, in this case a 502 status;
• launching a local app process;
• connectingourcode to it via setting theEXEMPLIGHRATIA_GITHUB_STATUS_URL
environment variable to the URL of the fake service;

• test.

Last but not least let’s convert our test of gh_organizations(),

test_that("gh_organizations works", {

if (!nzchar(Sys.getenv("REAL_REQUESTS"))) {
app <- webfakes::new_app()
app$get("/organizations", function(req, res) {

res$send_json(
jsonlite::read_json(
testthat::test_path(
file.path("responses", "organizations.json")

)
),
auto_unbox = TRUE
)

})
web <- webfakes::local_app_process(app, start = TRUE)
web$local_env(list(EXEMPLIGHRATIA_GITHUB_API_URL = "{url}"))

}

testthat::expect_type(gh_organizations(), "character")
})

As before we

• create a new app;
• have it returnedsomethingwechose foraGET requestof the/organizations
endpoint. In this case, we have it return the content of a JSON file we created

10.3. ALSO TESTING FOR REAL INTERACTIONS 65

at tests/testthat/responses/organizations.json by copy‑pasting a
real response from the API;

• launch a local app process;
• set its URL as the EXEMPLIGHRATIA_GITHUB_API_URL environment variable;
• test.

10.3 Also testing for real interactions

What if the API responses change? Hopefully we’d notice that thanks to following
API news. However, sometimes web APIs change without any notice. Therefore it is
important to run tests against the real web service once in a while.

In our tests we have used the condition

if (!nzchar(Sys.getenv("REAL_REQUESTS"))) {

before launching the app and using its URL as URL for the service. So if our
tests are generic enough, we can add a CI build where the environment vari‑
able REAL_REQUESTS is set to true. If they are not generic enough, we can use
theapproach exemplified in the chapter about httptest.

• set up a folder real‑tests with tests interacting with the real web service;
• add it to Rbuildignore;
• in a CI build, delete tests/testthat and replace it with real‑tests, before running
R CMD check.

10.4 Summary

• We set up webfakes usage in our package exemplighratia by adding a depen‑
dency on webfakes and by adding a setup file to fool our own package that
needs an API token.

• We created and launched fake apps in our test files.

Now, how do wemake sure this works?

• Turn off wifi, run the tests again. It works! Turn on wifi again.
• Open .Renviron (usethis::edit_r_environ()), edit “GITHUB_PAT”
into “byeGITHUB_PAT”, re‑start R, run the tests again. It works! Fix your
“GITHUB_PAT” token in .Renviron.

66 CHAPTER 10. USE WEBFAKES

So we now have tests that no longer rely on an internet connection nor on having
API credentials.

For the full list of changes applied to exemplighratia in this chapter, see the pull re‑
quest diff on GitHub.

In the next chapter, we shall compare the three approaches to HTTP testing we’ve
demo‑ed.

https://github.com/ropensci-books/exemplighratia/pull/4/files
https://github.com/ropensci-books/exemplighratia/pull/4/files

Chapter 11

vcr (& webmockr), httptest,
webfakes

We’re nowat a nice stagewherewe havemade a demoof usage for each of theHTTP
testing packages, in our exemplighratia package. Of course, the choice of strategy in
the demo is a bit subjective, but we hope it showed the best of each tool.

A first message that’s important to us: if you’re learning about HTTP testing and us‑
ing it in a branch of your own package sounds daunting, create a minimal package
for playing!

11.1 What HTTP client can you use (curl, httr, crul)

• httptest only works with httr (the most popular HTTP R client);
• vcr (& webmockr) works with both httr and crul (the two “high‑level” HTTP R
clients);

• webfakes works with any R HTTP client, even base R if you wish.

11.2 Sustainability of the packages

All packages (vcr,webmockr, httptest,webfakes) are activelymaintained. During the
writing of this book, issues andpull requestswere tackled rather quickly, and always
in a very nice way.

67

68 CHAPTER 11. VCR (& WEBMOCKR), HTTPTEST, WEBFAKES

11.3 Test writing experience

In all cases having HTTP tests, i.e. tests that work independently from any internet
connection, depends on

• setup, which is mainly adding a dependency on the HTTP testing packages in
DESCRIPTION, and a setup or helper file;

• providing responses from the API.

The difference between packages, the test writing experience depends on how you
can provide responses from the API, both real ones and fake ones.

With vcr and httptest for tests testing normal behavior, after set up (for which
there is a helper function), testing is just a function away (vcr::use_cassette(),
httptest::with_mock_dir(), httptest::with_mock_api()). Recording
happens automatically during the first run of tests. You might also provide fake
recorded response or dumb down the existing ones. For creating API errors, and API
sequence of responses (e.g. 502 then 200), you end up either using webmockr, or
amending mock files, see vcr and httptest related docs.1

With webfakes you need to create an app. There could be one per test, per test file
or for the whole test suite. It might seem like more overhead code but being able
to share an app between different tests reduces this effort. You can test for an API
sequence of responses (e.g. 502 then 200) by following an how‑to. The one thing
that’s not supported in webfakes yet is a smooth workflow for recording responses,
so at the time of writing you might need to write your own workflow for recording
responses.

In general setup&test writing might be easier for packages with mocking (vcr
and httptest) but you might be able to replicate more complex behavior with
webfakes (such as an OAuth dance).

11.3.1 The special case of secrets

With webfakes as no authentication is needed at any point, you have less chance of
exposing a secret.

With httptest only the body of responses is saved, so unless it contains secrets, no
further effort is needed. If you need to redact mock files, see the corresponding vi‑
gnette.

With vcr as all HTTP interactions, including request URLs and headers, are
saved to disk, you will most often have to use the filter_sensitive_data,
filter_request_header and/or filter_response_header arguments of
vcr::vcr_configure().

1Sequence of requests are not supported smoothly yet by httptest.

https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://r-lib.github.io/webfakes/dev/articles/how-to.html#how-do-i-test-a-sequence-of-requests-
https://r-lib.github.io/webfakes/dev/articles/how-to.html#how-do-i-test-a-sequence-of-requests-
https://r-lib.github.io/webfakes/articles/oauth.html
https://enpiar.com/r/httptest/articles/redacting.html
https://enpiar.com/r/httptest/articles/redacting.html
https://github.com/nealrichardson/httptest/issues/49

11.4. TEST DEBUGGING EXPERIENCE 69

11.3.2 How aboutmaking real requests

In all three cases, switching back to real requests might be an environment variable
away (turning vcr off, setting the URL of the real web service as URL to be connected
to instead of a webfakes fake web service). However, your tests using fixed/fake re‑
sponses / a fake web service might not work with real requests as you can’t trigger
an API error, and as you might test for specific values in your tests using mock files
whereas the API returns something different every day. Therefore, and it’s a chal‑
lenge common to all three packages, youmight need to choose to have distinct tests
as integration tests/contract tests. See also our chapter aboutmaking real requests.

11.4 Test debugging experience

Sadly sometimes one needs to run code from the tests in an interactive session, ei‑
ther to debug tests after making a code change, or to learn how to write HTTP tests.

With webfakes, debugging works this way: load the helper or test file where

• the app is created,
• the environment variable connecting your package code to the fake web ser‑
vice is changed.

Then run your code. To debugwebfakes apps, follow the guidance.

With vcr, refer to the debugging vignette: you’ll have to load the helper file
or source the setup file after making sure the paths use in it work both from
tests/testthat/ and the package root (see ?vcr::vcr_test_path), and then
use vcr::inject_cassette(); don’t forget to run vcr::eject_cassette()
afterwards. With webmockr debugging is quite natural, run the code that’s in the
test, in particular webmockr::enable() and webmockr::disable().

With httptest, the process is similar as with vcr except the key functions are

• use_mock_api()
• .mockPaths.

11.5 Conclusion

In this chapter we compared the three R packages that make HTTP testing easier. If
you are still unsure which one to pick, first try packages out without commitment,
in branches or so, but then choose one and commit to your lock‑in.

https://www.martinfowler.com/bliki/ContractTest.html
https://r-lib.github.io/webfakes/dev/articles/how-to.html#how-can-i-debug-an-app-
https://docs.ropensci.org/vcr/articles/debugging.html
https://enpiar.com/r/httptest/reference/use_mock_api.html
https://enpiar.com/r/httptest/reference/mockPaths.html
https://vickiboykis.com/2019/02/10/commit-to-your-lock-in/

70 CHAPTER 11. VCR (& WEBMOCKR), HTTPTEST, WEBFAKES

“Every piece of code written in a given language or framework is a step
away from any other language, and five more minutes you’ll have to
spend migrating it to something else. That’s fine. You just have to de‑
cide what you’re willing to be locked into.
(…)
Code these days becomes obsolete so quickly, regardless of what’s cho‑
sen. By the time your needs change, by the time the latest framework is
obsolete, all of the code will be rotten anyway
(…)
The most dangerous feature about these articles examining cloud lock‑
in is that they introduce a kind of paralysis into teams that result in ap‑
plications never being completely fleshed out or finished.”
Vicki Boykis, “Commit to your lock‑in”.

Part III

Advanced Topics

71

Chapter 12

Making real requests

As touched upon in the Whole Games section, it’s good to have some tests against
the real API. Indeed, the web resource can change.

12.1 What can change?

What can happen?

• An API introducing rate‑limiting;
• A web resource disappearing;
• etc.

12.2 How tomake real requests

Maybe you can just run the same tests without using the mock files.

• with vcr, this behavior is one environment variable away (namely,
VCR_TURN_OFF).

• with httptest or httptest2 you can create the same kind of behavior.
• with webfakes you can also create that behavior.

Now this means assuming all your tests work with real requests.

• If a few tests won’t work with real requests (say they have a fixture mimicking
an API error, or specific answer as if todaywere a given date) then you can skip

73

https://docs.ropensci.org/vcr/reference/lightswitch.html
https://enpiar.com/r/httptest/index.html#how-do-i-switch-between-mocking-and-real-requests
https://r-lib.github.io/webfakes/articles/how-to.html#how-to-make-sure-that-my-code-works-with-the-real-api-

74 CHAPTER 12. MAKING REAL REQUESTS

these testswhenmocking/faking thewebservice is off. With vcr thismeansus‑
ing vcr::skip_if_vcr_off(); with httptest andwebfakes you’d create your
custom skipper.

• If most tests won’t work with real requests, then creating a different folder for
tests making real requests makes sense. It might be less unit‑y as you could
view these tests as integration/contract tests. Maybe they could use testthat’s
snapshot testing (so you could view what’s different in the API).

12.2.1 When tomake real requests?

Locally, youmight want to make real requests once in a while, in particular before a
CRAN release.

On continuous integration you have to learn how to trigger workflows and configure
build matrices to e.g.

• Have one build in your build matrix using real requests at each commit (this
might be toomuch, see next section);

• Have one scheduled workflow once a day or once a week using real requests.

12.3 Why notmake only or toomany real requests?

The reasons why you can’t onlymake real requests in your tests are the reasonswhy
you are reading these book:

• they are slower;
• you can’t test for API errors;
• etc.

Now no matter what your setup is you don’t want to make too many real requests
as it can be bad for the web resource and bad for you (e.g. using all your allowed
requests!). Regardingallowed requests, if possible youcouldhowever increase them
by requesting for some sort of special development account if such a thing exists for
the API you are working with.

12.4 A complement to real requests: API news!

Running real requests is important to notice if something changes in the API (ex‑
pected requests, responses). Now, you can and should also follow the news of the
web resource you are using in case there is something in place.

https://testthat.r-lib.org/articles/snapshotting.html
https://testthat.r-lib.org/articles/snapshotting.html

12.4. A COMPLEMENT TO REAL REQUESTS: API NEWS! 75

• Subscribe to the API newsletter if there’s one;
• Read API changelogs if they are public;
• Inparticular, if theAPI is developedonGitHub/GitLab/etc. youcouldwatch the
repo or subscribe to releases, so that youmight automatically get notified.

76 CHAPTER 12. MAKING REAL REQUESTS

Chapter 13

CRAN‑ (and Bioconductor)
preparedness for your tests

There is no one right answer to how tomanage your tests for CRAN, except that you
do want a clean check result on CRAN at all times. This probably applies to Biocon‑
ductor too. The following is adiscussionof the various considerations ‑which should
give you enough information to make an educated decision.

13.1 Running tests on CRAN?

You can run vcr/httptest/httptest2/webfakes enabled tests on CRAN. CRAN is okay
with files associated with tests, and so in general on CRAN you can run your tests
that use cassettes, mock files or recorded responses on CRAN. Another aspect is the
presence of dependencies: make sure the HTTP testing package you use is listed as
Suggests dependency in DESCRIPTION!With webfakes this mightmean also listing
optional dependencies in DESCRIPTION. With webfakes, your tests if run on CRAN
should not assume the availability of a given port.

When running HTTP tests on CRAN, be aware of a few things:

• If your tests require any secret environment variables or R options (apart from
the “foobar” ones used to fool your package when using a saved response),
they won’t be available on CRAN. In these cases you likely want to skip these
tests with testthat::skip_on_cran().

• If your tests have cassettes, mock files or recorded responses with sensitive
information in them, you probably do not want to have those cassettes on the
internet, in which case youwon’t be running vcr enabled tests on CRAN either.

77

https://r-lib.github.io/webfakes/#optional-dependencies

78 CHAPTER 13. CRAN‑ (AND BIOCONDUCTOR) PREPAREDNESS FOR YOUR TESTS

In the case of sensitive information, you might want to Rbuildignore the cas‑
settes, mock files or recorded responses (and to gitignore them or make your
package development repository private).

• There is a maximal size for package sources so you will want your cassettes,
mock files or recorded responses to not be too big. There are three ways to
limit their size

– Make requests that do not generate a huge response (e.g. tweak the time
range);

– Edit the recorded responses (why not even copy‑paste responses from
the API docs as those are often short) — see vcr docs about editing cas‑
settes for pros and cons;

– Share cassettes / mock files / recorded responses between tests.

Do not compress cassettes,mock files or recorded responses: CRAN submissions are
already compressed; compressed files will make git diffs hard to use.

13.2 Skipping a few tests on CRAN?

If you are worried at all about problems with HTTP tests on CRAN you can use
testthat::skip_on_cran() to skip specific tests. Make sure your tests run
somewhere else (on continuous integration) regularly!

We’d recommend not running tests making real requests on CRAN, even when inter‑
acting with an API without authentication.

13.3 Skipping all tests on CRAN?

If you have a good continuous integration setup (several operating systems, sched‑
uled runs, etc.) why not skip all tests on CRAN?

13.4 Stress‑test your package

Tostress‑test yourpackagebeforeaCRANsubmission, userhub::check_for_cran()
without passing any environment variable to the function, and use WinBuilder.

https://blog.r-hub.io/2020/05/20/rbuildignore/
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://github.com/nealrichardson/httptest/issues/11#issuecomment-354699342
https://blog.r-hub.io/2020/04/01/win-builder/

Chapter 14

Security

Whendeveloping a package that uses secrets (API keys, OAuth tokens) andproduces
them (OAuth tokens, sensitive data),

• You want the secrets to be usable by you, collaborators and CI services, with‑
out being readable by anyone else;

• You want tests and checks (e.g. vignette building) that use the secrets to be
turned off in environments where secrets won’t be available (CRAN, forks of
your development repository).

Your general attitude should be to think about:

• what are my secrets (an API key, an OAuth2.0 access token and the refresh to‑
ken, etc.) and where/how exactly are there used (in the query part of an URL?
as a header? which header, Authentication or something else?) – packages
like httr or httr2 might abstract some of the complexity for you but you need
to really knowwhere secrets are used and could be leaked,

• what could go wrong (e.g. your token ending up being published),
• how to prevent that (save your unedited token outside of your package, make
sure it is not printed in logs or present in package check artefacts),

• how to fix mistakes (how do you deactivate a token and how do you check no
one used it in the meantime).

14.1 Managing secrets securely

14.1.1 Follow best practice when developing your package

This book is about testing but security starts with how you develop your package.
To better protect your users’ secret,

79

https://blog.r-hub.io/2021/01/25/oauth-2.0/

80 CHAPTER 14. SECURITY

• It might be best not to let users pass API keys as parameters. It’s best to have
them save them in .Renviron or e.g. using the keyring package. This way, API
keys arenot in scripts. Theopencagepackagemight provide some inspiration.

• If the API you areworkingwith lets you pass keys either in the request headers
or query string, prefer to use request headers.

14.1.2 Share secrets with continuous integration services

You need to share secrets with continuous integration services… for real requests
only! For tests using vcr, httptest, httptest2 or webfakes, you at most need a fake
secret, e.g. “foobar” as API key – except for recording cassettes and mock files, but
that is something you do locally.

In GitHub repositories, when storing a new secret, do not save it with quotes. I.e. if
your secret is “blabla”, the field shouldcontainblabla, not"blabla"nor'blabla'.

knitr::include_graphics("secret.png")

14.1.2.1 API keys

For API keys, you can use something like GitHub repo secrets if you use GitHub Ac‑
tions. Then for the secret to be accessible as environment variable from your work‑
flow in GitHub Actions as explained in gargle docs you need to add a line like

env:
PACKAGE_PASSWORD: ${{ secrets.PACKAGE_PASSWORD }}

https://github.com/r-lib/keyring
https://docs.ropensci.org/opencage/articles/opencage.html#authentication-1
https://gargle.r-lib.org/articles/articles/managing-tokens-securely.html#provide-environment-variable-to-other-services-1

14.1. MANAGING SECRETS SECURELY 81

14.1.2.2 More complex objects

If your secret is an OAuth token, youmight be able to re‑create it from pieces, where
the pieces are strings you can store as repo secrets much like what you’d do for an
API key. E.g. if your secret is an OAuth token, the actual secrets are the access token
and refresh token.

env:
ACCESS_TOKEN: ${{ secrets.ACCESS_TOKEN }}
REFRESH_TOKEN: ${{ secrets.REFRESH_TOKEN }}

Therefore you could re‑create it using e.g. the credentials argument of
httr::oauth2.0_token(). The re‑creation using environment variables
Sys.getenv("ACCESS_TOKEN") and Sys.getenv("REFRESH_TOKEN") would
happen in a testthat helper file.

14.1.3 Secret files

For files, youwill need to use encryption and to store a text‑version of the encryption
key/passwords as GitHub repo secret if you use GitHub Actions. Read the documen‑
tation of the continuous integration service your are using to find out how secrets
are protected and how you can use them in your builds.

See gargle vignette about securely managing tokens.

The approach is:

• Create your OAuth token locally, either outside of your package folder, or in‑
side of it if you really want to, but gitignored and Rbuildignored.

• Encrypt it usinge.g. theuser‑friendly cyphrpackage. Save thecode for this and
for the step before in a file e.g. inst/secrets.R for when you need to re‑create a
token as even refresh tokens expire.

• For encrypting you need some sort of password. You will want to save
it securely as text in your user‑level .Renviron and in your GitHub repo
secrets (or equivalent secret place for other CI services). E.g. create
a key via sodium_key <- sodium::keygen() and get its text equivalent
via sodium::bin2hex(sodium_key). E.g. the latter commandmight giveme
e46b7faf296e3f0624e6240a6efafe3dfb17b92ae0089c7e51952934b60749f2
and I will save this in .Renviron

MEETUPR_PWD="e46b7faf296e3f0624e6240a6efafe3dfb17b92ae0089c7e51952934b60749f2"

Example of a script creating and encrypting an OAuth token (for the Meetup API).

https://blog.r-hub.io/2021/01/25/oauth-2.0/#what-are-your-oauth-20-secret-credentials
https://blog.r-hub.io/2020/11/18/testthat-utility-belt/
https://gargle.r-lib.org/articles/articles/managing-tokens-securely.html
https://docs.ropensci.org/cyphr/
https://rstats.wtf/r-startup.html#renviron

82 CHAPTER 14. SECURITY

thanks Jenny Bryan https://github.com/r-lib/gargle/blob/4fcf142fde43d107c6a20f905052f24859133c30/R/secret.R

token_path <- testthat::test_path(".meetup_token.rds")
use_build_ignore(token_path)
use_git_ignore(token_path)

meetupr::meetup_auth(
token = NULL,
cache = TRUE,
set_renv = FALSE,
token_path = token_path

)

sodium_key <- sodium::keygen()
set_renv("MEETUPR_PWD" = sodium::bin2hex(sodium_key))
set_renv being an internal function taken from rtweet
that saves something to .Renviron

get key from environment variable
key <- cyphr::key_sodium(sodium::hex2bin(Sys.getenv("MEETUPR_PWD")))

cyphr::encrypt_file(
token_path,
key = key,
dest = testthat::test_path("secret.rds")

)

• In tests you have a setup / helper file with code like below.

key <- cyphr::key_sodium(sodium::hex2bin(Sys.getenv("MEETUPR_PWD")))

temptoken <- tempfile(fileext = ".rds")

cyphr::decrypt_file(
testthat::test_path("secret.rds"),
key = key,
dest = temptoken

)

Now what happens in contexts where MEETUPR_PWD is not available? Well there
should be no tests using it! See our chapter about making real requests.

https://blog.r-hub.io/2020/11/18/testthat-utility-belt/#code-called-in-your-tests

14.2. SENSITIVE RECORDED RESPONSES? 83

14.1.4 Do not store secrets in the cassettes,mock files, recorded
responses

• With vcr make sure to configure vcr correctly.
• With httptest and httptest2 only the response body (and headers, but not by
default) are recorded. If those contains secrets, refer to the documentation
about redacting sensitive information (for httptest2).

• With webfakes you will be creating recorded responses yourself, make sure
this process does not leak secrets. If you test something related to authenti‑
cation, use fake secrets.

If the API you are interacting with uses OAuth for instance, make sure you are not
leaking access tokens nor refresh tokens.

14.1.5 Escape tests that require secrets

This all depends on your setup for testing real requests. You have to be sure no test
requiring secrets will be run on CRAN for instance.

14.2 Sensitive recorded responses?

In that case you might want to gitignore the cassettes / mock files / recorded re‑
sponses, andskip the testsusing themoncontinuous integration (e.g.testthat::skip_on_ci()
or something more involved). You’d also Rbuildignore the cassettes / mock files /
recorded responses, as you do not want to release them to CRAN.

14.3 Further resources

Some tools might help you detect leaks or prevent them.

• shhgit’s goal is “Find secrets in your code. Secrets detection for your GitHub,
GitLab and Bitbucket repositories”.

• Yelp’s detect‑secret is “An enterprise friendly way of detecting and preventing
secrets in code.”.

• git‑secret is a “bash tool to store your private data inside a git repo”.

https://enpiar.com/r/httptest/articles/redacting.html
https://enpiar.com/httptest2/articles/redacting.html
https://blog.r-hub.io/2020/05/20/rbuildignore/
https://github.com/eth0izzle/shhgit
https://github.com/Yelp/detect-secrets
https://git-secret.io/

84 CHAPTER 14. SECURITY

Chapter 15

Faking HTTP errors

With HTTP testing you can test the behavior of your package in case of an API er‑
ror without having to actually trigger an API error. This is important for testing your
package’s gracefulness (informative error message for the user) and robustness (if
you e.g. use retrying in case of API errors).

15.1 How to test for API errors (e.g. 503)

Different possibilities:

• Use webmockr as in our demo.
• Edit a vcr cassette; be careful to skip this test when vcr is off with
vcr::skip_if_vcr_is_off().

• With httptest or httptest2, edit a mock file as in our demo, or create it from
scratch.

• With webfakes, choose what to return, have a specific app for the test, see our
demo.

15.2 How to test for sequence of responses (e.g. 503
then 200)

Different possibilities:

• Use webmockr.
• Edit a vcr cassette; be careful to skip this test when vcr is off with
vcr::skip_if_vcr_is_off()

85

https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html#the-same-thing-with-webmockr-3
https://docs.ropensci.org/vcr/articles/cassette-manual-editing.html#example-2-test-using-an-edited-cassette-with-a-503-then-a-200-1

86 CHAPTER 15. FAKING HTTP ERRORS

• With httptest, this is not easy yet (httptest2 issue)
• With webfakes, follow the docs. Also have a specific app for the test as this is
not the behavior you want in all your tests.‘

https://github.com/nealrichardson/httptest/issues/49
https://github.com/nealrichardson/httptest2/issues/18
https://r-lib.github.io/webfakes/articles/how-to.html#how-do-i-test-a-sequence-of-requests-

Chapter 16

Contributor friendliness

How do youmake your package wrapping an HTTP resource contributor‑friendly?

rOpenSci has some general advice on contributor‑friendliness.

Now, there are somemore aspects when dealing with HTTP testing.

16.1 Taking notes about encryption

In your contributing guide, make sure you note how you e.g. created an encrypted
token for the tests. Link to a script that one could run to re‑create it. Good for future
contributors including yourself!

16.2 Providing a sandbox

It might be very neat to provide a sandbox, even if just for yourself.

• If interacting with say Twitter API you might want to create a Twitter account
dedicated to this.

• If interacting with some sort of web platform you might want to create an ac‑
count special for storing test data.

• Some web APIs provide a test API key, a test account that one can request ac‑
cess to.

Make sure to take notes on how to create / request access to a sandbox, in your con‑
tributing guide.

87

https://devguide.ropensci.org/collaboration.html#friendlyfiles

88 CHAPTER 16. CONTRIBUTOR FRIENDLINESS

16.3 Switching between accounts depending on the
developmentmode

Yourpackagemighthave somebehaviour to loadadefault token for instance, placed
in an app dir. Now, for testing, you might want it to load another token, and you
probably also want the token choice to be as automatic as possible.
The rtweet package has such logic.

• It detects testing/dev mode.

is_testing <- function() {
identical(Sys.getenv("TESTTHAT"), "true")

}
is_dev_mode <- function() {
exists(".__DEVTOOLS__", .getNamespace("rtweet"))

}

• If some environment variables are present it is able to create a testing token.

rtweet_test <- function() {
access_token <- Sys.getenv("RTWEET_ACCESS_TOKEN")
access_secret <- Sys.getenv("RTWEET_ACCESS_SECRET")

if (identical(access_token, "") || identical(access_secret, "")) {
return()

}

rtweet_bot(
"7rX1CfEYOjrtZenmBhjljPzO3",
"rM3HOLDqmjWzr9UN4cvscchlkFprPNNg99zJJU5R8iYtpC0P0q",
access_token,
access_secret

)
}

• The testing token or a default token is loaded depending on the development
mode.

16.4 Documenting HTTP testing

Contributors to the package might not be familiar with the HTTP testing package(s)
you use (this is true of any non‑trivial test setup). Make sure your contributing guide
mentions pre‑requisites and link to resources (maybe even this very book?).

https://github.com/ropensci/rtweet
https://github.com/ropensci/rtweet/blob/f46bc98f9ac8433c7681d48ed778358bc22a552c/R/utils.R#L132
https://github.com/ropensci/rtweet/blob/270733c6bf46b2be794d7492d4a4e31d384db0b7/R/auth.R#L281
https://github.com/ropensci/rtweet/blob/270733c6bf46b2be794d7492d4a4e31d384db0b7/R/auth.R#L234
https://github.com/ropensci/rtweet/blob/270733c6bf46b2be794d7492d4a4e31d384db0b7/R/auth.R#L234

Part IV

Conclusion

89

Chapter 17

Conclusion

Once you get here you will have read about basic HTTP (testing) concepts in R,
discovered five great packages in demos (httptest2, vcr&webmockr, httptest,
webfakes), and dived into more advanced topics like security.

What’s next? Applying those tools in your package(s), of course!

• Pick one or several HTTP testing package(s) for your package. Examples of
combinations:

– vcr for testing normal behavior, webmockr for testing behavior in case of
web resource errors.

– vcr or httptest2 for most tests, webfakes for more advanced things like
OAuth2.0 flows or slow internet connection.

• Read all the docs of the HTTP testing package(s) you choose – a very worthy
use of your time. For vcr and webmockr you can even stay here in this book
and take advantage of the “vcr details” and “webmockr details” sections.

• For more examples, you could also look at the reverse dependencies of the
HTTP testingpackage(s) youuse to seehow theyareusedbyotherdevelopers.

• Follow developments of the HTTP testing package(s) you choose. As all five
packageswepresentedaredevelopedonGitHub, youcoulde.g. release‑watch
their repositories. They are also all distributedonCRAN, so youmight use your
usual channel for learning about CRAN updates.

• Participate in the development of the HTTP testing package(s) you choose?
Your bug reports, feature requests, contributions might be helpful. Make sure
to read the contributing guide and to look at current activity in the reposito‑
ries.

• Report any feedback about this book, your experience HTTP testing, tips, etc.

91

92 CHAPTER 17. CONCLUSION

– in the GitHub repository of the book,
– or in rOpenSci forum.

Happy HTTP testing!

https://github.com/ropensci-books/http-testing
https://discuss.ropensci.org/

Part V

webmockr details

93

Chapter 18

Mocking HTTP Requests

The very very short version is: webmockr helps you stubHTTP requests so you don’t
have to repeat yourself.

18.1 Package documentation

Check out https://docs.ropensci.org/webmockr/ for documentation on webmockr
functions.

18.2 Features

• Stubbing HTTP requests at low http client lib level
• Setting and verifying expectations on HTTP requests
• Matching requests based onmethod, URI, headers and body
• Support for testthat via vcr
• Can be used for testing or outside of a testing context

18.3 Howwebmockr works in detail

You tell webmockr what HTTP request you want to match against and if it sees a re‑
questmatching your criteria it doesn’t actually do theHTTP request. Instead, it gives
back the same object you would have gotten back with a real request, but only with
the bits it knows about. For example, we can’t give back the actual data you’d get
from a real HTTP request as the request wasn’t performed.

95

https://github.com/ropensci/webmockr
https://docs.ropensci.org/webmockr/
https://github.com/ropensci/vcr

96 CHAPTER 18. MOCKING HTTP REQUESTS

In addition, if you set anexpectationofwhatwebmockr should return,we return that.
For example, if you expect a request to return a 418 error (I’m a Teapot), then that’s
what you’ll get.

What you canmatch against

• HTTPmethod (required)

Plus any single or combination of the following:

• URI

– Right now, we can match directly against URI’s, and with regex URI pat‑
terns. Eventually, we will support RFC 6570 URI templates.

– We normalize URI paths so that URL encoded things match URL
un‑encoded things (e.g. hello world to hello%20world)

• Query parameters

– Wenormalize query parameter values so that URL encoded thingsmatch
URL un‑encoded things (e.g. message = hello world to message =
hello%20world)

• Request headers

– We normalize headers and treat all forms of same headers as equal. For
example, the following two sets of headers are equal:

* list(H1 = "value1", content_length = 123, X_CuStOm_hEAder
= "foo")

* list(h1 = "value1", "Content-Length" = 123, "x-cuSTOM-HeAder"
= "foo")

• Request body

Real HTTP requests

There’s a few scenarios to think about when using webmockr:

After doing

library(webmockr)

webmockr is loaded but not turned on. At this point webmockr doesn’t change any‑
thing.

Once you turn on webmockr like

18.4. BASIC USAGE 97

webmockr::enable()

webmockr will now by default not allow real HTTP requests from the http libraries
that adapters are loaded for (crul and httr).

You can optionally allow real requests via webmockr_allow_net_connect(), and
disallow real requests via webmockr_disable_net_connect(). You can check
whether you are allowing real requests with webmockr_net_connect_allowed().

Certain kinds of real HTTP requests allowed: We don’t suppoprt this yet, but you
can allow localhost HTTP requests with the allow_localhost parameter in the
webmockr_configure() function.

Storing actual HTTP responses

webmockr doesn’t do that. Check out vcr

18.4 Basic usage

library("webmockr")
enable webmockr
webmockr::enable()

Stubbed request based on uri only andwith the default response

stub_request("get", "https://httpbin.org/get")

#> <webmockr stub>
#> method: get
#> uri: https://httpbin.org/get
#> with:
#> query:
#> body:
#> request_headers:
#> to_return:

library("crul")
x <- HttpClient$new(url = "https://httpbin.org")
x$get('get')

#> <crul response>
#> url: https://httpbin.org/get

https://github.com/ropensci/vcr

98 CHAPTER 18. MOCKING HTTP REQUESTS

#> request_headers:
#> User-Agent: libcurl/7.81.0 r-curl/5.2.0 crul/1.4.0
#> Accept-Encoding: gzip, deflate
#> Accept: application/json, text/xml, application/xml, */*
#> response_headers:
#> status: 200

Chapter 19

stubs

library("webmockr")

set return objects

stub_request("get", "https://httpbin.org/get") %>%
wi_th(
query = list(hello = "world")) %>%
to_return(status = 418)

#> <webmockr stub>
#> method: get
#> uri: https://httpbin.org/get
#> with:
#> query: hello=world
#> body:
#> request_headers:
#> to_return:
#> - status: 418
#> body:
#> response_headers:
#> should_timeout: FALSE
#> should_raise: FALSE

x$get('get', query = list(hello = "world"))

#> <crul response>
#> url: https://httpbin.org/get

99

100 CHAPTER 19. STUBS

#> request_headers:
#> User-Agent: libcurl/7.81.0 r-curl/5.2.0 crul/1.4.0
#> Accept-Encoding: gzip, deflate
#> Accept: application/json, text/xml, application/xml, */*
#> response_headers:
#> status: 418

Stubbing requests based onmethod, uri and query params

stub_request("get", "https://httpbin.org/get") %>%
wi_th(query = list(hello = "world"),

headers = list('User-Agent' = 'libcurl/7.51.0 r-curl/2.6 crul/0.3.6',
'Accept-Encoding' = "gzip, deflate"))

#> <webmockr stub>
#> method: get
#> uri: https://httpbin.org/get
#> with:
#> query: hello=world
#> body:
#> request_headers: User-Agent=libcurl/7.51.0 r-cur..., Accept-Encoding=gzip, deflate
#> to_return:

stub_registry()

#> <webmockr stub registry>
#> Registered Stubs
#> GET: https://httpbin.org/get
#> GET: https://httpbin.org/get?hello=world | to_return: with status 418
#> GET: https://httpbin.org/get?hello=world with headers {"User-Agent":"libcurl/7.51.0 r-curl/2.6 crul/0.3.6","Accept-Encoding":"gzip, deflate"}

x <- HttpClient$new(url = "https://httpbin.org")
x$get('get', query = list(hello = "world"))

#> <crul response>
#> url: https://httpbin.org/get
#> request_headers:
#> User-Agent: libcurl/7.81.0 r-curl/5.2.0 crul/1.4.0
#> Accept-Encoding: gzip, deflate
#> Accept: application/json, text/xml, application/xml, */*
#> response_headers:
#> status: 418

19.1. WRITING TO DISK 101

Stubbing requests and set expectation of a timeout

stub_request("post", "https://httpbin.org/post") %>% to_timeout()
x <- HttpClient$new(url = "https://httpbin.org")
x$post('post')
#> Error: Request Timeout (HTTP 408).
#> - The client did not produce a request within the time that the server was prepared
#> to wait. The client MAY repeat the request without modifications at any later time.

Stubbing requests and set HTTP error expectation

library(fauxpas)
stub_request("get", "https://httpbin.org/get?a=b") %>% to_raise(HTTPBadRequest)
x <- HttpClient$new(url = "https://httpbin.org")
x$get('get', query = list(a = "b"))
#> Error: Bad Request (HTTP 400).
#> - The request could not be understood by the server due to malformed syntax.
#> The client SHOULD NOT repeat the request without modifications.

19.1 Writing to disk

There are two ways to deal with mocking writing to disk. First, you can create a file
with the data you’d like in that file, then tell crul or httr where that file is. Second,
you can simply givewebmockr a file path (that doesn’t exist yet) and somedata, and
webmockr can take care of putting the data in the file.

Here’s the first method, where you put data in a file as your mock, then pass the file
as a connection (with file(<file path>)) to to_return().

make a temp file
f <- tempfile(fileext = ".json")
write something to the file
cat("{\"hello\":\"world\"}\n", file = f)
make the stub
invisible(stub_request("get", "https://httpbin.org/get") %>%
to_return(body = file(f)))

make a request
out <- HttpClient$new("https://httpbin.org/get")$get(disk = f)
view stubbed file content
readLines(file(f))

#> [1] "{\"hello\":\"world\"}"

102 CHAPTER 19. STUBS

With the second method, use webmockr::mock_file() to have webmockr handle
file and contents.

g <- tempfile(fileext = ".json")
make the stub
invisible(stub_request("get", "https://httpbin.org/get?a=b") %>%
to_return(body = mock_file(path = g, payload = "{\"hello\":\"mars\"}\n")))

make a request
out <- crul::HttpClient$new("https://httpbin.org/get?a=b")$get(disk = g)
view stubbed file content
readLines(out$content)

#> [1] "{\"hello\":\"mars\"}" ""

webmockr also supports httr::write_disk(), here letting webmockr handle the
mock file creation:

library(httr)
httr_mock()
make a temp file
f <- tempfile(fileext = ".json")
make the stub
invisible(stub_request("get", "https://httpbin.org/get?cheese=swiss") %>%
to_return(
body = mock_file(path = f, payload = "{\"foo\": \"bar\"}"),
headers = list('content-type' = "application/json")

))
make a request
out <- GET("https://httpbin.org/get?cheese=swiss", write_disk(f, TRUE))
view stubbed file content
readLines(out$content)

#> [1] "{\"foo\": \"bar\"}"

Chapter 20

testing

library("webmockr")
library("crul")
library("testthat")

stub_registry_clear()

make a stub
stub_request("get", "https://httpbin.org/get") %>%

to_return(body = "success!", status = 200)

#> <webmockr stub>
#> method: get
#> uri: https://httpbin.org/get
#> with:
#> query:
#> body:
#> request_headers:
#> to_return:
#> - status: 200
#> body: success!
#> response_headers:
#> should_timeout: FALSE
#> should_raise: FALSE

check that it's in the stub registry
stub_registry()

#> <webmockr stub registry>

103

104 CHAPTER 20. TESTING

#> Registered Stubs
#> GET: https://httpbin.org/get | to_return: with body "success!" with status 200

make the request
z <- crul::HttpClient$new(url = "https://httpbin.org")$get("get")

run tests (nothing returned means it passed)
expect_is(z, "HttpResponse")
expect_equal(z$status_code, 200)
expect_equal(z$parse("UTF-8"), "success!")

Chapter 21

utilities

library("webmockr")

21.1 Managing stubs

• enable()
• enabled()
• disable()
• httr_mock()

21.2 Managing stubs

• stub_registry()
• stub_registry_clear()
• remove_request_stub()

21.3 Managing requests

• request_registry()

105

106 CHAPTER 21. UTILITIES

Part VI

vcr details

107

Chapter 22

Caching HTTP requests

Record HTTP calls and replay them

22.1 Package documentation

Check out https://docs.ropensci.org/vcr/ for documentation on vcr functions.

22.2 Terminology

• vcr: the name comes from the idea thatwewant to record something and play
it back later, like a vcr

• cassette: A thing to record HTTP interactions to. Right now the only option is
the file system (writing to files), but in the future could be other things, e.g. a
key‑value store like Redis

• fixture: A fixture is something used to consistently test a piece of software. In
this case, a cassette (just defined above) is a fixture ‑ used in unit tests. If you
use our setup function vcr_setup() the default directory created to hold cas‑
settes is called fixtures/ as a signal as to what the folder contains.

• Persisters: how to save requests ‑ currently only option is the file system
• serialize: translating data into a format that can be stored; here, translate
HTTP request and response data into a representation on disk to read back
later

• Serializers: how to serialize theHTTP response ‑ currently only option is YAML;
other options in the future could include e.g. JSON

• insert cassette: create a cassette (all HTTP interactions will be recorded to this
cassette)

• eject cassette: eject the cassette (no longer recording to that cassette)

109

https://docs.ropensci.org/vcr/

110 CHAPTER 22. CACHING HTTP REQUESTS

• replay: refers to using a cached result of an http request that was recorded
earlier

22.3 Design

This section explains vcr’s internal design and architecture.

22.3.1 Where vcr comes from andwhy R6

vcr was “ported” from the Ruby gem (aka, library) of the same name1. Because it
was ported fromRuby, an object‑oriented programming language I thought it would
beeasier touseanobject system inR thatmost closely resemble thatused inRuby (at
least inmyopinion). This thinking lead to choosingR6. The exported functions users
interactwith are not R6 classes, but are rather normal R functions. However,most of
the internal code in the package uses R6. Thus, familiarity with R6 is important for
people that may want to contribute to vcr, but not required at all for vcr users.

22.3.2 Principles

22.3.2.1 An easy to use interface hides complexity

As described above, vcr uses R6 internally, but users interact with normal R func‑
tions. Internal functions that are quite complicated are largely R6 while exported,
simpler functions users interact with are normal R functions.

22.3.2.2 Class/function names are inherited from Ruby vcr

Since R vcr was ported from Ruby, we kept most of the names of functions/classes
and variables. So if you’re wondering about why a function, class, or variable has
a particular name, its derivation can not be found out in this package, for the most
part that is.

22.3.2.3 Hooks into HTTP clients

Perhaps the most fundamental thing about that this package work is how it knows
what HTTP requests are being made. This stumped me for quite a long time. When
looking at Ruby vcr, at first I thought it must be “listening” for HTTP requests some‑
how. Then I foundout aboutmonkeypatching; that’s how it’s achieved inRuby. That

1The first version of Ruby’s vcr was released in February 2010 https://rubygems.org/gems/vcr/
versions/0.1.0. Ruby vcr source code: https://github.com/vcr/vcr/

https://adv-r.hadley.nz/r6.html
https://en.wikipedia.org/wiki/Monkey_patch
https://rubygems.org/gems/vcr/versions/0.1.0
https://rubygems.org/gems/vcr/versions/0.1.0
https://github.com/vcr/vcr/

22.3. DESIGN 111

is, the Ruby vcr package literally overrides certainmethods in Ruby HTTP clients, hi‑
jacking internals of the HTTP clients.

However, monkey patching is not allowed in R. Thus, in Rwe have to somehow have
“hooks” into HTTP clients in R. Fortunately, Scott is the maintainer of one of the
HTTP clients, crul, so was able to quickly create a hook. Very fortunately, there
was already a hookmechanism in the httr package.

The actual hooks are not in vcr, but in webmockr. vcr depends on webmockr for
hooking into HTTP clients httr and crul.

22.3.3 Internal classes

An overview of some of the more important aspects of vcr.

22.3.3.1 Configuration

An internal object (vcr_c) is created when vcr is loaded with the default vcr config‑
uration options inside of an R6 class VCRConfig ‑ see https://github.com/ropensci/
vcr/blob/main/R/onLoad.R. This class is keeps track of default and user specified
configuration options. You can access vcr_c using triple namespace :::, though it
is not intended for general use. Whenever you make calls to vcr_configure() or
other configuration functions, vcr_c is affected.

22.3.3.2 Cassette class

Cassette is an R6 class that handles internals/state for each cassette. Each time
you run use_cassette() this class is used. The class has quite a few methods in
it, so there’s a lot going on in the class. Ideally the class would be separated into
subclasses to handle similar sets of logic, but there’s not an easyway to do that with
R6.

Of note in Cassette is that when called, within the initialize() call webmockr is
used to create webmockr stubs.

22.3.3.3 HowHTTP requests are handled

Within webmockr, there are calls to the vcr class RequestHandler, which has
child classes RequestHandlerCrul and RequestHandlerHttr for crul and httr,
respectively. These classes determine what to do with each HTTP request. The
options for each HTTP request include:

• Ignored You can ignore HTTP requests under certain rules using the configu‑
ration options ignore_hosts and ignore_localhost

https://github.com/ropensci/vcr/blob/main/R/onLoad.R
https://github.com/ropensci/vcr/blob/main/R/onLoad.R

112 CHAPTER 22. CACHING HTTP REQUESTS

• Stubbed by vcr This is an HTTP request for which a match is found in the
cassette defined in the use_cassette()/insert_cassette() call. In this
case thematching request/response from the cassette is returnedwith no real
HTTP request allowed.

• RecordableThis is anHTTP request forwhichnomatch is found in thecassette
defined in the use_cassette()/insert_cassette() call. In this case a real
HTTP request is allowed, and the request/response is recorded to the cassette.

• Unhandled This is a group of cases, all of which cause an error to be thrown
with a message trying to help the user figure out how to fix the problem.

If you use vcr logging you’ll see these categories in your logs.

22.3.3.4 Serializers

Serializers handle in what format cassettes are written to files on disk. The current
options are YAML (default) and JSON. YAML was implemented first in vcr because
that’s the default option in Ruby vcr.

An R6 class Serializer is the parent class for all serializer types; YAML and JSON are
both R6 classes that inherit from Serializer. Both YAML and JSON define just two
methods: serialize() and deserialize() for converting R structures to yaml or
json, and converting yaml or json back to R structures, respectively.

22.3.4 Environments

22.3.4.1 Logging

An internal environment (vcr_log_env) is used when you use logging. At this point
it only keeps track of one variable ‑ file ‑ to be able to refer to what file is used for
logging across many classes/functions that need to write to the log file.

22.3.4.2 A bit of housekeeping

Another internal environment (vcr__env) is used to keep track of a few items, in‑
cluding the current cassette in use, and the last vcr error.

22.3.4.3 Lightswitch

Another internal environment (light_switch) is used to keep track of users turning
on and off vcr. See ?lightswitch.

https://docs.ropensci.org/vcr/articles/debugging.html?q=logging#logging-1

22.4. BASIC USAGE 113

22.4 Basic usage

22.4.1 In tests

In your tests, forwhichever tests youwant tousevcr, wrap theminavcr::use_cassette()
call like:

library(testthat)
vcr::use_cassette("rl_citation", {
test_that("my test", {
aa <- rl_citation()

expect_is(aa, "character")
expect_match(aa, "IUCN")
expect_match(aa, "www.iucnredlist.org")

})
})

OR put the vcr::use_cassette() block on the inside, but put testthat expecta‑
tions outside of the vcr::use_cassette() block:

library(testthat)
test_that("my test", {
vcr::use_cassette("rl_citation", {

aa <- rl_citation()
})

expect_is(aa, "character")
expect_match(aa, "IUCN")
expect_match(aa, "www.iucnredlist.org")

})

Don’t wrap the use_cassette() block inside your test_that() block with
testthat expectations inside the use_cassette() block, as you’ll only get the
line number that the use_cassette() block starts on on failures.

The first time you run the tests, a “cassette” i.e. a file with recorded HTTP inter‑
actions, is created at tests/fixtures/rl_citation.yml. The times after that,
the cassette will be used. If you change your code and more HTTP interactions
are needed in the code wrapped by vcr::use_cassette("rl_citation", delete
tests/fixtures/rl_citation.yml and run the tests again for re‑recording the
cassette.

114 CHAPTER 22. CACHING HTTP REQUESTS

22.4.2 Outside of tests

If you want to get a feel for how vcr works, although you don’t need too.

library(vcr)
library(crul)

cli <- crul::HttpClient$new(url = "https://eu.httpbin.org")
system.time(
use_cassette(name = "helloworld", {

cli$get("get")
})

)

The request gets recorded, and all subsequent requests of the same form used the
cached HTTP response, and so are much faster

system.time(
use_cassette(name = "helloworld", {

cli$get("get")
})

)

Importantly, your unit test deals with the same inputs and the same outputs ‑ but
behind the scenes you use a cached HTTP response ‑ thus, your tests run faster.

The cached response looks something like (condensed for brevity):

http_interactions:
- request:

method: get
uri: https://eu.httpbin.org/get
body:

encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:

status_code: '200'
message: OK
explanation: Request fulfilled, document follows

headers:
status: HTTP/1.1 200 OK
connection: keep-alive

22.5. VCR ENABLED TESTING 115

body:
encoding: UTF-8
string: "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json,
text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\",
\n \"Connection\": \"close\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\":
\"libcurl/7.54.0 r-curl/3.2 crul/0.5.2\"\n }, \n \"origin\": \"111.222.333.444\",
\n \"url\": \"https://eu.httpbin.org/get\"\n}\n"

recorded_at: 2018-04-03 22:55:02 GMT
recorded_with: vcr/0.1.0, webmockr/0.2.4, crul/0.5.2

All components of both the request and response are preserved, so that the HTTP
client (in this case crul) can reconstruct its own response just as it would if it wasn’t
using vcr.

22.4.3 Less basic usage

For tweaking things to your needs, make sure to read the docs about configuration
(e.g., where are the fixtures saved? can they be re‑recorded automatically regulary?)
and request matching (how does vcr match a request to a recorded interaction?)

All components of both the request and response are preserved, so that the HTTP
client (in this case crul) can reconstruct its own response just as it would if it wasn’t
using vcr.

22.5 vcr enabled testing

22.5.1 check vs. test

TLDR: Rundevtools::test()before runningdevtools::check() for
recording your cassettes.

When running tests or checks of your whole package, note that you’ll get dif‑
ferent results with devtools::check() (check button of RStudio build pane)
vs. devtools::test() (test button of RStudio build pane). This arises be‑
cause devtools::check() runs in a temporary directory and files created
(vcr cassettes) are only in that temporary directory and thus don’t persist after
devtools::check() exits.

However, devtools::test()does not run in a temporary directory, so files created
(vcr cassettes) are in whatever directory you’re running it in.

Alternatively, you can run devtools::test_file() (or the “Run test” button in
RStudio) to create your vcr cassettes one test file at a time.

https://docs.ropensci.org/vcr/articles/configuration.html
https://docs.ropensci.org/vcr/articles/request_matching.html

116 CHAPTER 22. CACHING HTTP REQUESTS

22.5.2 CI sites: GitHub Actions, Appveyor, etc.

Refer to the security chapter.

Chapter 23

Advanced vcr usage

Now that we’ve covered basic vcr usage, it’s time for some more advanced usage
topics.

library("vcr")

23.1 Mocking writing to disk

If you have http requests for which you write the response to disk, then use
vcr_configure() to set the write_disk_path option. See more about the
write_disk_path configuration option.

Here, we create a temporary directory, then set the fixtures

tmpdir <- tempdir()
vcr_configure(
dir = file.path(tmpdir, "fixtures"),
write_disk_path = file.path(tmpdir, "files")

)

#> <vcr configuration>
#> Cassette Dir: /tmp/RtmpkruPPc/fixtures
#> Record: once
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: method, uri
#> Preserve Bytes?: FALSE
#> Logging?: FALSE

117

118 CHAPTER 23. ADVANCED VCR USAGE

#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path: /tmp/RtmpkruPPc/files

Then pass a file path (that doesn’t exist yet) to crul’s disk parameter. vcr will take
care of handling writing the response to that file in addition to the cassette.

library(crul)
make a temp file
f <- tempfile(fileext = ".json")
make a request
cas <- use_cassette("test_write_to_disk", {
out <- HttpClient$new("https://httpbin.org/get")$get(disk = f)

})
file.exists(out$content)

#> [1] TRUE

out$parse()

#> [1] "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json, text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"libcurl/7.81.0 r-curl/5.2.0 crul/1.4.0\", \n \"X-Amzn-Trace-Id\": \"Root=1-65bcaf85-615ab9e7572b0b4c76d65e87\"\n }, \n \"origin\": \"40.65.196.147\", \n \"url\": \"https://httpbin.org/get\"\n}\n"

Thisalsoworkswithhttr. Theonlydifference is that youwrite todiskwitha function
httr::write_disk(path) rather than a parameter.

Note that when you write to disk when using vcr, the cassette is slightly changed.
Instead of holding the http response body itself, the cassette has the file path with
the response body.

http_interactions:
- request:

method: get
uri: https://httpbin.org/get

response:
headers:

status: HTTP/1.1 200 OK
access-control-allow-credentials: 'true'

body:
encoding: UTF-8
file: yes
string: /private/var/folders/fc/n7g_vrvn0sx_st0p8lxb3ts40000gn/T/Rtmp5W4olr/files/file177e2e5d97ec.json

And the file has the response body that otherwise would have been in the string
yaml field above:

23.1. MOCKING WRITING TO DISK 119

{
"args": {},
"headers": {
"Accept": "application/json, text/xml, application/xml, */*",
"Accept-Encoding": "gzip, deflate",
"Host": "httpbin.org",
"User-Agent": "libcurl/7.54.0 r-curl/4.3 crul/0.9.0"

},
"origin": "24.21.229.59, 24.21.229.59",
"url": "https://httpbin.org/get"

}

120 CHAPTER 23. ADVANCED VCR USAGE

Chapter 24

Configure vcr

library("vcr")

You can also get the default configuration variables via vcr_config_defaults()

vcr_config_defaults()

#> $warn_on_empty_cassette
#> [1] TRUE
#>
#> $quiet
#> [1] TRUE
#>
#> $verbose_errors
#> [1] FALSE
#>
#> $write_disk_path
#> NULL
#>
#> $filter_query_parameters
#> NULL
#>
#> $filter_response_headers
#> NULL
#>
#> $filter_request_headers
#> NULL
#>

121

122 CHAPTER 24. CONFIGURE VCR

#> $filter_sensitive_data_regex
#> NULL
#>
#> $filter_sensitive_data
#> NULL
#>
#> $log_opts
#> log_optsfile
#> [1] "vcr.log"
#>
#> log_optslog_prefix
#> [1] "Cassette"
#>
#> log_optsdate
#> [1] TRUE
#>
#>
#> $log
#> [1] FALSE
#>
#> $linked_context
#> NULL
#>
#> $cassettes
#> list()
#>
#> $allow_http_connections_when_no_cassette
#> [1] FALSE
#>
#> $clean_outdated_http_interactions
#> [1] FALSE
#>
#> $re_record_interval
#> NULL
#>
#> $turned_off
#> [1] FALSE
#>
#> $preserve_exact_body_bytes
#> [1] FALSE
#>
#> $uri_parser
#> [1] "crul::url_parse"
#>
#> $ignore_request
#> NULL

24.1. SET CONFIGURATION VARIABLES 123

#>
#> $ignore_localhost
#> [1] FALSE
#>
#> $ignore_hosts
#> NULL
#>
#> $persist_with
#> [1] "FileSystem"
#>
#> $json_pretty
#> [1] FALSE
#>
#> $serialize_with
#> [1] "yaml"
#>
#> $allow_unused_http_interactions
#> [1] TRUE
#>
#> $match_requests_on
#> [1] "method" "uri"
#>
#> $record
#> [1] "once"
#>
#> $dir
#> [1] "."

Thesedefaults are setwhenyou loadvcr ‑ youcanoverrideanyof themasdescribed
below.

24.1 Set configuration variables

Use vcr_configure() to set configuration variables.

For example, set a single variable:

vcr_configure(
dir = "foobar/vcr_cassettes"

)

#> <vcr configuration>
#> Cassette Dir: foobar/vcr_cassettes
#> Record: once

124 CHAPTER 24. CONFIGURE VCR

#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: method, uri
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

Ormany at once:

vcr_configure(
dir = "foobar/vcr_cassettes",
record = "all"

)

#> <vcr configuration>
#> Cassette Dir: foobar/vcr_cassettes
#> Record: all
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: method, uri
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.2 Re‑set to defaults

vcr_configure_reset()

24.3 Details on some of the config options

24.3.1 dir

Directory where cassettes are stored

24.3. DETAILS ON SOME OF THE CONFIG OPTIONS 125

vcr_configure(dir = "new/path")

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: once
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: method, uri
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.2 record

The record mode

One of: ‘all’, ‘none’, ‘new_episodes’, ‘once’. See ?recording for info on the options

vcr_configure(record = "new_episodes")

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: method, uri
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.3 match_requests_on

Customize how vcrmatches requests

vcr_configure(match_requests_on = c('query', 'headers'))

#> <vcr configuration>
#> Cassette Dir: new/path

126 CHAPTER 24. CONFIGURE VCR

#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.4 allow_unused_http_interactions

Allow HTTP connections when no cassette

Default is TRUE, and thus does not error when http interactions are unused. You can
set to FALSE in which case vcr errors when a cassette is ejected and not all http in‑
teractions have been used.

vcr_configure(allow_unused_http_interactions = FALSE)

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.5 serialize_with

Which serializer to use: “yaml” or “json”. Note that you can have multiple cassettes
with the same name as long as they use different serializers; so if you only want one
cassette for a given cassette name, make sure to not switch serializers, or clean up
files you no longer need.

vcr_configure(serialize_with = "yaml")

#> <vcr configuration>
#> Cassette Dir: new/path

24.3. DETAILS ON SOME OF THE CONFIG OPTIONS 127

#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.6 persist_with

Which persister to use. Right now only option is “FileSystem”

vcr_configure(persist_with = "FileSystem")

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts:
#> ignore localhost?: FALSE
#> Write disk path:

24.3.7 ignoring some requests

ignore_hosts

Specify particular hosts to ignore. By ignore, wemean that real HTTP requests to the
ignored host will be allowed to occur, while all others will not.

vcr_configure(ignore_hosts = "google.com")

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers

128 CHAPTER 24. CONFIGURE VCR

#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts: google.com
#> ignore localhost?: FALSE
#> Write disk path:

ignore_localhost

Ignore all localhost requests

vcr_configure(ignore_localhost = TRUE)

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: crul::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts: google.com
#> ignore localhost?: TRUE
#> Write disk path:

ignore_request

THIS DOESN’T WORK YET

How to ignore requests

For ignoring requests, you can for example, have real http requests go through (ig‑
nored by vcr) while other requests are handled by vcr. For example, let’s say you
want requests to google.com to be ignored:

vcr_configure(ignore_hosts = "google.com")
use_cassette("foo_bar", {
crul::HttpClient$new("https://httpbin.org/get")$get()
crul::HttpClient$new("https://google.com")$get()

})

The request to httpbin.org will be handled by vcr, a cassette created for the re‑
quest/response to that url, while the google.com request will be ignored and not
cached at all.

Note: ignoring requests only works for the crul package for now; it should work for
httr in a later vcr version.

24.3. DETAILS ON SOME OF THE CONFIG OPTIONS 129

24.3.8 uri_parse

Which uri parser to use

By default we use crul::url_parse, but you can use a different one. Remember to
pass in the function quoted, and namespaced.

vcr_configure(uri_parser = "urltools::url_parse")

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: urltools::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: FALSE
#> Logging?: FALSE
#> ignored hosts: google.com
#> ignore localhost?: TRUE
#> Write disk path:

24.3.9 preserve_exact_body_bytes

Some HTTP servers are not well‑behaved and respond with invalid data. Set
preserve_exact_body_bytes to TRUE to base64 encode the result body in
order to preserve the bytes exactly as‑is. vcr does not do this by default, since
base64‑encoding the string removes the human readability of the cassette.

vcr_configure(preserve_exact_body_bytes = TRUE)

#> <vcr configuration>
#> Cassette Dir: new/path
#> Record: new_episodes
#> Serialize with: yaml
#> URI Parser: urltools::url_parse
#> Match Requests on: query, headers
#> Preserve Bytes?: TRUE
#> Logging?: FALSE
#> ignored hosts: google.com
#> ignore localhost?: TRUE
#> Write disk path:

130 CHAPTER 24. CONFIGURE VCR

24.3.10 filter_sensitive_data

A named list of values to replace. Sometimes your package or script is working with
sensitive tokens/keys, which you do not want to accidentally share with the world.
Before recording (writing to a cassette) we do the replacement and thenwhen read‑
ing from the cassette we do the reverse replacement to get back to the real data.

vcr_configure(
filter_sensitive_data = list("<some_api_key>" = Sys.getenv('MY_API_KEY'))

)

Before recording to disk, the env var MY_API_KEY is retrieved from your machine,
and we find instances of it, and replace with <some_api_key>. When replaying to
create the HTTP response object we put the real value of the env var back in place.
To target specific request or response headers see filter_request_headers and
filter_response_headers.

24.3.11 filter_request_headers

Expects a character vector or a named list. If a character vector, or any unnamed
element in a list, the request header is removed before beingwritten to the cassette.
If a named list is passed, the name is the header and the value is the valuewithwhich
to replace the real value.
A request header you set to remove or replace is only removed/replaced from the
cassette, and any requests using a cassette, but will still be in your crul or httr re‑
sponse objects on a real request that creates the cassette.
Examples:

vcr_configure(
filter_request_headers = "Authorization"

)
vcr_configure(
filter_request_headers = c("Authorization", "User-Agent")

)
vcr_configure(
filter_request_headers = list(Authorization = "<<<not-my-bearer-token>>>")

)

24.3.12 filter_response_headers

Expects a character vector or a named list. If a character vector, or any unnamed el‑
ement in a list, the response header is removed before beingwritten to the cassette.

24.3. DETAILS ON SOME OF THE CONFIG OPTIONS 131

If a named list is passed, the name is the header and the value is the valuewithwhich
to replace the real value.

A response header you set to remove or replace is only removed/replaced from the
cassette, and any requests using a cassette, but will still be in your crul or httr re‑
sponse objects on a real request that creates the cassette.

Examples:

vcr_configure(
filter_response_headers = "server"

)
vcr_configure(
filter_response_headers = c("server", "date")

)
vcr_configure(
filter_response_headers = list(server = "fake-server")

)

24.3.13 filter_query_parameters

Expects a character vector or a named list. If a character vector, or any unnamed
element in a list, the query parameter is removed (both parameter name and value)
before being written to the cassette.

If a named list is passed, the name is the query parameter name and the value is the
value with which to replace the real value.

A response header you set to remove or replace is only removed/replaced from the
cassette, and any requests using a cassette, but will still be in your crul or httr re‑
sponse objects on a real request that creates the cassette.

Beware of your match_requests_on option when using this filter. If you filter out
a query parameter it’s probably a bad idea to match on query given that there
is no way for vcr to restore the exact http request from your cassette after one
or more query parameters is removed or changed. One way you could filter a
query parameter and still match on query or at least on the complete uri is to use
replacement behavior (a named list), but instead of list(a="b") use two values
list(a=c("b","c")), where “c” is the string to be stored in the cassette. You
could of course replace those values with values from environment variables so that
you obscure the real values if your code is public.

Examples:

completely drop parameter "user"
vcr_configure(
filter_query_parameters = "user"

132 CHAPTER 24. CONFIGURE VCR

)
completely drop parameters "user" and "api_key"
vcr_configure(
filter_query_parameters = c("user", "api_key")

)
replace the value of parameter "api_key" with "fake-api-key"
NOTE: in this case there's no way to put back any value on
subsequent requests, so we have to match by dropping this
parameter value before comparing URIs
vcr_configure(
filter_query_parameters = list(api_key = "fake-api-key")

)
replace the value found at Sys.getenv("MY_API_KEY") of parameter
"api_key" with the value "foo". When using a cassette on subsequent
requests, we can replace "foo" with the value at Sys.getenv("MY_API_KEY")
before doing the URI comparison
vcr_configure(
filter_query_parameters = list(api_key = c(Sys.getenv("MY_API_KEY"), "foo"))

)

Chapter 25

Recordmodes

Record modes dictate under what circumstances http requests/responses are
recorded to cassettes (disk). Set the recording mode with the parameter record in
the use_cassette() and insert_cassette() functions.

25.1 once

The once record mode will:

• Replay previously recorded interactions.
• Record new interactions if there is no cassette file.
• Cause an error to be raised for new requests if there is a cassette file.

It is similar to the new_episodes record mode, but will prevent new, unexpected
requests from being made (i.e. because the request URI changed or whatever).

once is the default record mode, used when you do not set one.

25.2 none

The none record mode will:

• Replay previously recorded interactions.
• Cause an error to be raised for any new requests.

This is usefulwhenyour codemakespotentially dangerousHTTP requests. Thenone
record mode guarantees that no new HTTP requests will be made.

133

134 CHAPTER 25. RECORD MODES

25.3 new_episodes

The new_episodes record mode will:

• Record new interactions.
• Replay previously recorded interactions.

It is similar to the once record mode, but will always record new interactions, even
if you have an existing recorded one that is similar (but not identical, based on the
match_request_on option).

25.4 all

The all record mode will:

• Record new interactions.
• Never replay previously recorded interactions.

This can be temporarily used to force vcr to re‑record a cassette (i.e. to ensure the
responses are not out of date) or can be used when you simply want to log all HTTP
requests.

Chapter 26

Request matching

To match previously recorded requests, vcr has to try to match new HTTP requests
to a previously recorded one. By default, wematch on HTTPmethod (e.g., GET) and
URI (e.g., http://foo.com), following Ruby’s VCR gem.

Youcancustomizehowwematch requestswithoneormoreof the followingoptions,
some of which are on by default, some of which can be used together, and some
alone.

• method: Use the method request matcher to match requests on the HTTP
method (i.e. GET, POST, PUT, DELETE, etc). You will generally want to use this
matcher. Themethodmatcher is used (alongwith the urimatcher) by default
if you do not specify how requests should match.

• uri: Use the uri request matcher to match requests on the request URI. The
urimatcher is used (along with themethodmatcher) by default if you do not
specify how requests should match.

• host: Use the host request matcher to match requests on the request host.
You can use this (alone, or in combination with path) as an alternative to uri
so that non‑deterministic portions of the URI are not considered as part of the
request matching.

• path: Use the path request matcher tomatch requests on the path portion of
the request URI. You can use this (alone, or in combination with host) as an
alternative to uri so that non‑deterministic portions of the URI

• query: Use the query request matcher to match requests on the query string
portion of the request URI. You can use this (alone, or in combinationwith oth‑
ers) as an alternative to uri so that non‑deterministic portions of the URI are
not considered as part of the request matching.

• body: Use the body request matcher to match requests on the request body.
• headers: Use the headers request matcher to match requests on the request
headers.

135

136 CHAPTER 26. REQUEST MATCHING

You can set your own options by tweaking the match_requests_on parameter in
use_cassette():

library(vcr)

use_cassette(name = "foo_bar", {
cli$post("post", body = list(a = 5))

},
match_requests_on = c('method', 'headers', 'body')

)

26.1 Matching

26.1.1 headers

library(crul)
library(vcr)
cli <- crul::HttpClient$new("https://httpbin.org/get",
headers = list(foo = "bar"))

use_cassette(name = "nothing_new", {
one <- cli$get()

},
match_requests_on = 'headers'

)
cli$headers$foo <- "stuff"
use_cassette(name = "nothing_new", {

two <- cli$get()
},
match_requests_on = 'headers'

)
one$request_headers
two$request_headers

Chapter 27

Debugging your tests that use
vcr

Sometimes your tests using a vcr cassette will fail and you will want to debug them.

27.1 An HTTP request has been made that vcr does
not know how to handle

If you get an error starting with “An HTTP request has been made that vcr does not
know how to handle:” when running your tests, it means that the code in your test
makes an HTTP request for which there is no matching information in the cassette
you are using. Youmight have added a request, or changed one slightly.

The easy fix is: delete the cassette and re‑run the test to re‑record the cassette. Run
the test a second time to ensure all is well. If not, escalate to the next paragraph.

Maybe youdidn’t actuallywant to change the request youaremaking. Make sure the
requests donot contain something random, or something related to e.g.what time it
is now, in theURI (http://foo.com?time=13). Tomake sure things are not varying,
youmightwant tousemocking (of e.g. a function returning the current time), setting
a randomseed, using withr (for e.g. setting an option to a certain value in your test).

27.1.1 Actual debugging

Ideally you will want to run the code of the tests as if it were run inside tests, in par‑
ticular, using the same vcr cassette.

137

https://withr.r-lib.org/

138 CHAPTER 27. DEBUGGING YOUR TESTS THAT USE VCR

27.1.2 Prepare your debugging environment

You will first need to load either the vcr helper tests/testthat/helper-vcr.R
(e.g. viadevtools::load_all()) or source thevcr setup filetests/testthat/setup-vcr.R
i.e. the file with these lines (andmaybe others)

library("vcr")
invisible(vcr::vcr_configure(
dir = vcr::vcr_test_path("fixtures"),
filter_sensitive_data = list("<<github_api_token>>" = Sys.getenv('GITHUB_PAT'))

))
vcr::check_cassette_names()

If instead of vcr::vcr_test_path("fixtures") you see "../fixtures", replace
"../fixtures"withvcr::vcr_test_path("fixtures"), asvcr::vcr_test_path()
is a function that is meant to help exactly what you will want: have the path to
tests/fixtures/ work from tests and from the root (which is where you will be
running the code to debug it).

So that is one step (loading the vcr helper or sourcing the vcr setup file), or maybe
two (if youalsohad to replace"../fixtures"withvcr::vcr_test_path("fixtures")).

27.1.3 Debugging itself

Now look at the test whose code you are trying to debug e.g.

foo <- function() crul::ok('https://httpbin.org/get')

test_that("foo works", {
vcr::use_cassette("testing", {

x <- foo()
})
expect_true(x)

})

If you want to run the code as if you were in the test,

foo <- function() crul::ok('https://httpbin.org/get')
vcr::insert_cassette("testing") # it will be created if needed
x <- foo()
x
further interactive debugging and fixes
vcr::eject_cassette("testing")

27.1. ANHTTPREQUESTHASBEENMADETHATVCRDOESNOTKNOWHOWTOHANDLE139

27.1.4 Logging

You can use vcr’s built in logging to help in your debugging process. To configure
logging, use the vcr_configure() function, and set log=TRUE and set options for
logging on the log_opts parameter as a named list. See ?vcr_configure for de‑
tails.

Here, we are setting our log file to be a temporary file that will be cleaned up at the
end of the R session. Here, the file extension is .log, but the file extension does not
matter.

vcr::vcr_configure(
dir = vcr::vcr_test_path("fixtures"),
log = TRUE,
log_opts = list(file = file.path(tempdir(), "vcr.log"))

)

With log=TRUE you can continue with debugging. Open the log file you set in a text
editor or other location; or examine in your shell/terminal.

As an example, after running the block above

foo <- function() crul::ok('https://httpbin.org/get')

test_that("foo works", {
vcr::use_cassette("testing", {
x <- foo()

})
expect_true(x)

})

If we open the log file we’ll see the logs for each step vcr takes in handling an HTTP
request. The logs have information on what cassette was used, what exact time it
was recorded, what matchers were in use, the cassette options, and how a request
is handled.

[Cassette: 'testing'] - 2020-11-24 16:05:17 - Init. HTTPInteractionList w/ request matchers [method, uri] & 0 interaction(s): { }
[Cassette: 'testing'] - 2020-11-24 16:05:17 - Initialized with options: {name: testing, record: once, serialize_with: yaml, persist_with: FileSystem, match_requests_on: c("method", "uri"), update_content_length_header: FALSE, allow_playback_repeats: FALSE, preserve_exact_body_bytes: FALSE}
[Cassette: 'testing'] - 2020-11-24 16:05:17 - Handling request: head https://httpbin.org/get (disabled: FALSE)
[Cassette: 'testing'] - 2020-11-24 16:05:17 - Identified request type: (recordable) for head https://httpbin.org/get
[Cassette: 'testing'] - 2020-11-24 16:05:17 - Recorded HTTP interaction: head https://httpbin.org/get => 200

Logging isn’t meant to be turned on all the time ‑ rather only for debug‑
ging/informational purposes.

140 CHAPTER 27. DEBUGGING YOUR TESTS THAT USE VCR

27.1.5 Return to normal development

Make sure you ejected the cassette you were using!

Unless your vcr helper/setup file tweaked more things than you would like, you do
not even need to re‑start R, but you could, just to be on the safe side.

Chapter 28

Security with vcr

Refer to the security chapter for more general guidance.

28.1 Keeping secrets safe

To keep your secrets safe, you need to use parameters of vcr::vcr_configure()
that tell vcr either where secrets are (and what to put in their place), or what secrets
are (and what to put in their place). It is best if you know how secrets are used in
requests: e.g. is the API key passed as a header or part of the query string? Maybe
you will need different strategies for the different secrets (e.g. an OAuth2.0 access
token will be set as Authorization header but an OAuth2.0 refresh token might be in
a query string).

In all cases, it is crucial to look at your cassettes before putting them on the public
web, just to be sure you got the configuration right!

28.1.1 If the secret is in a request header

You can use filter_request_headers!

There are different ways to use it.

Remove one header from the cassettes
vcr_configure(
filter_request_headers = "Authorization"

)

Remove two headers from the cassettes

141

142 CHAPTER 28. SECURITY WITH VCR

vcr_configure(
filter_request_headers = c("Authorization", "User-Agent")

)

Replace one header with a given string
vcr_configure(
filter_request_headers = list(Authorization = "<<<not-my-bearer-token>>>")

)

28.1.2 If the secret is in a response header

Youcanusefilter_response_headers thatworks likefilter_request_headers.

28.1.3 If the secret is somewhere else

In this caseyouneed to tell vcrwhat thesecret string is viafilter_sensitive_data.
Do not write the secret string directly in the configuration, that’d defeat the purpose
of protecting it! Have the secret in an environment variable for instance and tell vcr
to read it from there.

The configuration parameter filter_sensitive_data accepts a named list.

Each element in the list should be of the following format:

thing_to_replace_it_with = thing_to_replace

We replace all instances of thing_to_replacewith thing_to_replace_it_with.

Before recording (writing to a cassette) we do the replacement and thenwhen read‑
ing from the cassette we do the reverse replacement to get back to the real data.

vcr_configure(
filter_sensitive_data = list("<<<my_api_key>>>" = Sys.getenv('API_KEY'))

)

Youwant tomake the string that replaces your sensitive string something that won’t
be easily found elsewhere in the response body/headers/etc.

28.2 API keys and tests run in varied contexts

• For real requests a real API key is needed.
• For requestsusingcassettesa fakeAPI key isneeded to fool yourpackage. That
is why in our demo of vcr we set a fake API key in a test setup file.

28.3. OTHER SECURITY 143

28.3 Other security

Let us knowabout anyother security concerns! Surely there’s thingswehaven’t con‑
sidered yet.

144 CHAPTER 28. SECURITY WITH VCR

Chapter 29

Turning vcr on and off

Sometimes you may need to turn off vcr, either for individual function calls, indi‑
vidual test blocks, whole test files, or for the entire package. The following attempts
to break down all the options.

vcr has the following four exported functions:

• turned_off() ‑ Turns vcr off for the duration of a code block
• turn_off() ‑ Turns vcr offcompletely, so that it no longerhandles everyHTTP
request

• turn_on() ‑ turns vcr on; the opposite of turn_off()
• turned_on() ‑ Asks if vcr is turned on, returns a boolean

Instead of using the above four functions, you could use environment variables to
achieve the same thing. This way you could enable/disable vcr in non‑interactive
environments such as continuous integration, Docker containers, or running R non‑
interactively from the command line. The full set of environment variables vcr uses,
all of which accept only TRUE or FALSE:

• VCR_TURN_OFF: turn off vcr altogether; set to TRUE to skip any vcr usage; de‑
fault: FALSE

• VCR_TURNED_OFF: set the turned_off internal package setting; this does not
turn off vcr completely as does VCR_TURN_OFF does, but rather is looked at
together with VCR_IGNORE_CASSETTES

• VCR_IGNORE_CASSETTES: set the ignore_cassettes internal package set‑
ting; this is looked at together with VCR_TURNED_OFF

145

146 CHAPTER 29. TURNING VCR ON AND OFF

29.1 turned_off

turned_off() lets you temporarily make a real HTTP request without completely
turning vcr off, unloading it, etc.

What happens internally is we turn off vcr, run your code block, then on exit
turn vcr back on ‑ such that vcr is only turned off for the duration of your code
block. Even if your code block errors, vcr will be turned back on due to use of
on.exit(turn_on())

library(vcr)
library(crul)
turned_off({
con <- HttpClient$new(url = "https://httpbin.org/get")
con$get()

})

#> <crul response>
#> url: https://httpbin.org/get
#> request_headers:
#> User-Agent: libcurl/7.54.0 r-curl/4.3 crul/0.9.0
#> Accept-Encoding: gzip, deflate
#> Accept: application/json, text/xml, application/xml, */*
#> response_headers:
#> status: HTTP/1.1 200 OK
#> date: Fri, 14 Feb 2020 19:44:46 GMT
#> content-type: application/json
#> content-length: 365
#> connection: keep-alive
#> server: gunicorn/19.9.0
#> access-control-allow-origin: *
#> access-control-allow-credentials: true
#> status: 200

29.2 turn_off/turn_on

turn_off() is different from turned_off() in that turn_off() is not aimed at
a single call block, but rather it turns vcr off for the entire package. turn_off()
does check first before turning vcr off that there is not currently a cassette in
use. turn_off() is meant to make R ignore vcr::insert_cassette() and
vcr::use_cassette() blocks in your test suite ‑ letting the code in the block run
as if they were not wrapped in vcr code ‑ so that all you have to do to run your tests
with cached requests/responses AND with real HTTP requests is toggle a single R
function or environment variable.

29.3. TURNED_ON 147

library(vcr)
vcr_configure(dir = tempdir())
real HTTP request works - vcr is not engaged here
crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()
wrap HTTP request in use_cassette() - vcr is engaged here
use_cassette("foo_bar", {
crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()

})
turn off & ignore cassettes - use_cassette is ignored, real HTTP request made
turn_off(ignore_cassettes = TRUE)
use_cassette("foo_bar", {
crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()

})
if you turn off and don't ignore cassettes, error thrown
turn_off(ignore_cassettes = FALSE)
use_cassette("foo_bar", {
res2=crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()

})
vcr back on - now use_cassette behaves as before
turn_on()
use_cassette("foo_bar3", {
res2=crul::HttpClient$new(url = "https://eu.httpbin.org/get")$get()

})

29.3 turned_on

turned_on() does what it says on the tin ‑ it tells you if vcr is turned on or not.

library(vcr)
turn_on()
turned_on()

#> [1] TRUE

turn_off()
turned_on()

#> [1] FALSE

148 CHAPTER 29. TURNING VCR ON AND OFF

29.4 Environment variables

The VCR_TURN_OFF environment variable can be used within R or on the command
line to turn off vcr. For example, you can run tests for a package that uses vcr, but
ignore any use_cassette/insert_cassette usage, by running this on the com‑
mand line in the root of your package:

VCR_TURN_OFF=true Rscript -e "devtools::test()"

Or, similarly within R:

Sys.setenv(VCR_TURN_OFF = TRUE)
devtools::test()

The VCR_TURNED_OFF and VCR_IGNORE_CASSETTES environment variables can be
used in combination to achieve the same thing as VCR_TURN_OFF:

VCR_TURNED_OFF=true VCR_IGNORE_CASSETTES=true Rscript -e "devtools::test()"

Chapter 30

Managing cassettes

30.1 Why edit cassettes?

By design vcr is very good at recording HTTP interactions that actually took place.
Now sometimes when testing/demo‑ing your package you will want to use fake
HTTP interactions. For instance:

• What happens if theweb API returns a 503 code? Is there an informative error?
• What happens if it returns a 503 and then a 200 code? Does the retry work?
• What if the API returns toomuch data for even simple queries and youwant to
make your cassettes smaller?

In all these cases, you can edit your cassettes as long as you are aware of the risks!

30.2 Risks related to cassette editing

• If you use a vcr cassette where you replace a 200 codewith a 503 code, and vcr
is turned off, the test will fail because the API will probably not return an error.
Use vcr::skip_if_vcr_off().

• If you edit cassettes by hand you can’t re‑record them easily, you’d need to
re‑record them then re‑apply your edits.

Therefore you’ll need to develop a good workflow.

149

150 CHAPTER 30. MANAGING CASSETTES

30.3 Example 1: test using an edited cassette with a
503

First, write your test e.g.

vcr::use_cassette("api-error", {
test_that("Errors are handled well", {
vcr::skip_if_vcr_off()
expect_error(call_my_api()), "error message")

})
})

Then run your tests the first time.

1. It will fail
2. It will have created a cassette under tests/fixtures/api-error.yml that

looks something like

http_interactions:
- request:

method: get
uri: https://eu.httpbin.org/get
body:

encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:

status_code: '200'
message: OK
explanation: Request fulfilled, document follows

headers:
status: HTTP/1.1 200 OK
connection: keep-alive

body:
encoding: UTF-8
string: "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json,
text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\",
\n \"Connection\": \"close\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\":
\"libcurl/7.54.0 r-curl/3.2 crul/0.5.2\"\n }, \n \"origin\": \"111.222.333.444\",
\n \"url\": \"https://eu.httpbin.org/get\"\n}\n"

recorded_at: 2018-04-03 22:55:02 GMT
recorded_with: vcr/0.1.0, webmockr/0.2.4, crul/0.5.2

30.4. EXAMPLE 2: TEST USING AN EDITED CASSETTE WITH A 503 THEN A 200 151

You can edit to (new status code)

http_interactions:
- request:

method: get
uri: https://eu.httpbin.org/get
body:
encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:
status_code: '503'

And run your test again, it should pass! Note the use of vcr::skip_if_vcr_off():
if vcr is turned off, there is a real API request and most probably this request won’t
get a 503 as a status code.

30.3.1 The same thing with webmockr

The advantage of the approach involving editing cassettes is that you only learn one
thing, which is vcr. Now, by using the webmockr directly in your tests, you can also
test for the behavior of your package in case of errors. Belowwe assume api_url()
returns the URL call_my_api() calls.

test_that("Errors are handled well", {
webmockr::enable()
stub <- webmockr::stub_request("get", api_url())
webmockr::to_return(stub, status = 503)
expect_error(call_my_api()), "error message")
webmockr::disable()

})

A big pro of this approach is that it works even when vcr is turned off. A con is that
it’s quite different from the vcr syntax.

30.4 Example 2: test using an edited cassette with a
503 then a 200

Here we assume your package contains some sort of retry.

https://blog.r-hub.io/2020/04/07/retry-wheel/

152 CHAPTER 30. MANAGING CASSETTES

First, write your test e.g.

vcr::use_cassette("api-error", {
test_that("Errors are handled well", {
vcr::skip_if_vcr_off()
expect_message(thing <- call_my_api()), "retry message")
expect_s4_class(thing, "data.frame")

})
})

Then run your tests the first time.

1. It will fail
2. It will have created a cassette under tests/fixtures/api-error.yml that

looks something like

http_interactions:
- request:

method: get
uri: https://eu.httpbin.org/get
body:

encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:

status_code: '200'
message: OK
explanation: Request fulfilled, document follows

headers:
status: HTTP/1.1 200 OK
connection: keep-alive

body:
encoding: UTF-8
string: "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json,
text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\",
\n \"Connection\": \"close\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\":
\"libcurl/7.54.0 r-curl/3.2 crul/0.5.2\"\n }, \n \"origin\": \"111.222.333.444\",
\n \"url\": \"https://eu.httpbin.org/get\"\n}\n"

recorded_at: 2018-04-03 22:55:02 GMT
recorded_with: vcr/0.1.0, webmockr/0.2.4, crul/0.5.2

You can duplicate the HTTP interaction, and make the first one return a 503 status
code. vcr will first use the first interaction, then the second one, when making the
same request.

30.4. EXAMPLE 2: TEST USING AN EDITED CASSETTE WITH A 503 THEN A 200 153

http_interactions:
- request:

method: get
uri: https://eu.httpbin.org/get
body:
encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:
status_code: '503'

- request:
method: get
uri: https://eu.httpbin.org/get
body:
encoding: ''
string: ''

headers:
User-Agent: libcurl/7.54.0 r-curl/3.2 crul/0.5.2

response:
status:
status_code: '200'
message: OK
explanation: Request fulfilled, document follows

headers:
status: HTTP/1.1 200 OK
connection: keep-alive

body:
encoding: UTF-8
string: "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json,
text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\",
\n \"Connection\": \"close\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\":
\"libcurl/7.54.0 r-curl/3.2 crul/0.5.2\"\n }, \n \"origin\": \"111.222.333.444\",
\n \"url\": \"https://eu.httpbin.org/get\"\n}\n"

recorded_at: 2018-04-03 22:55:02 GMT
recorded_with: vcr/0.1.0, webmockr/0.2.4, crul/0.5.2

And run your test again, it should pass! Note the use of vcr::skip_if_vcr_off():
if vcr is turned off, there is a real API request and most probably this request won’t
get a 503 as a status code.

154 CHAPTER 30. MANAGING CASSETTES

30.4.1 The same thing with webmockr

The advantage of the approach involving editing cassettes is that you only learn one
thing, which is vcr. Now, by using the webmockr directly in your tests, you can also
test for the behavior of your package in case of errors. Belowwe assume api_url()
returns the URL call_my_api() calls.

test_that("Errors are handled well", {
webmockr::enable()
stub <- webmockr::stub_request("get", api_url())
stub %>%
to_return(status = 503) %>%
to_return(status = 200, body = "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"application/json,

text/xml, application/xml, */*\", \n \"Accept-Encoding\": \"gzip, deflate\",
\n \"Connection\": \"close\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\":
\"libcurl/7.54.0 r-curl/3.2 crul/0.5.2\"\n }, \n \"origin\": \"111.222.333.444\",
\n \"url\": \"https://eu.httpbin.org/get\"\n}\n", headers = list(b = 6))

expect_message(thing <- call_my_api()), "retry message")
expect_s4_class(thing, "data.frame")

webmockr::disable()

})

The pro of this approach is the elegance of the stubbing, with the two different re‑
sponses. Each webmockr function like to_return() even has an argument times
indicating the number of times the given response should be returned.

The con is that on top of being different from vcr, in this case where we also needed
a good response in the end (the one with a 200 code, and an actual body), writing
the mock is muchmore cumbersome than just recording a vcr cassette.

Beawarewhenyouaddyourcassettes toeither.gitignoreand/or.Rbuildignore.

30.5 gitignore cassettes

The .gitignore file lets you tell [git][]what files to ignore ‑ those files arenot trackedby
git and if you share thegit repository to thepublicweb, those files in the.gitignore
file won’t be shared in the public version.

When using vcr youmaywant to include your cassettes in the .gitignore file. You
may wan to when your cassettes contain sensitive data that you don’t want to have
on the internet & dont want to hide with filter_sensitive_data.

You may want to have your cassettes included in your GitHub repo, both to be
present when tests run on CI, and when others run your tests.

https://guide.freecodecamp.org/git/gitignore/

30.6. RBUILDIGNORE CASSETTES 155

There’s no correct answer onwhether to gitignore your cassettes. Think about secu‑
rity implications andwhether youwant CI and human contributors to use previously
created cassettes or to create/use their own.

30.6 Rbuildignore cassettes

The .Rbuildignore file is used to tell R to ignore certain files/directories.

There’s not a clear use case for why you’d want to add vcr cassettes to your
.Rbuildignore file, but if you do be aware that will affect your vcr enabled tests.

30.7 sharing cassettes

Sometimes you may want to share or re‑use cassettes across tests, for example to
reduce the size for package sources or to test different functionality of your package
functions that make the same query under the hood.

To do so, you can use the same cassette name for multiple vcr::use_cassette()
calls. vcr::check_cassette_names() will complain about duplicate cassette
names, preventing you from accidentally re‑using cassettes, however. To allow
duplicates, you can provide a character vector of the cassette names youwant to re‑
use to the allowed_duplicates argument of vcr::check_cassette_names().
That way you can use the same cassette across multiple tests.

30.8 deleting cassettes

Removing a cassette is as easy as deleting in your file finder, or from the command
line, or fromwithin a text editor or RStudio.

If you delete a cassette, on the next test run the cassette will be recorded again.

If you do want to re‑record a test to a cassette, instead of deleting the file you can
toggle record modes.

30.9 cassette file types

For right now the only persistence option is yaml. So all files have a .yml extension.

Whenotherpersister options are added, additional file typesmaybe found. Thenext
persister type is likely to be JSON, so if you use that option, you’d have .json files
instead of .yml files.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#index-_002eRbuildignore-file

156 CHAPTER 30. MANAGING CASSETTES

Chapter 31

Gotchas

There’s a few things to watch out for when using vcr.

• Security: Don’t put your secure API keys, tokens, etc. on the public web. See
the Security chapter and the vcr security chapter.

• API key issues: Running vcr enabled tests in different contexts when API keys
are used can have some rough edges.

• Dates: Be careful when using dates in tests with vcr. e.g. if you generate to‑
days date, and pass that in to a function in your package that uses that date
for an HTTP request, the date will be different from the one in the matching
cassette, causing a vcr failure.

• HTTP errors: It’s a good idea to test failure behavior of a web service in your
test suite. Sometimesvcr canhandle that and sometimes it cannot. Openany
issues about this because ideally i think vcr could handle all cases of HTTP
failures.

• Very large response bodies: A few things about large response bodies. First,
vcrmay give you trouble with very large response bodies as we’ve see yaml
parsing problems already. Second, large response bodies means large cas‑
settes on disk ‑ so just be aware of the file size if that’s something thatmatters
to you. Third, large response bodies will take longer to load into R, so youmay
still have a multi second test run even though the test is using a cached HTTP
response.

• Encoding: We haven’t dealt with encoding much yet at all, so we’re
likely to run into encoding issues. One blunt instrument for this for
now is to set preserve_exact_body_bytes = TRUE when running
vcr::use_cassette() or vcr::insert_cassette(), which stores the
response body as base64.

• devtools::check vs. devtools::test: See (22.5.1)
• ignored files: See (30)

157

158 CHAPTER 31. GOTCHAS

31.1 Correct line identification

To get the actual lines where failures occur, you can wrap the test_that block in a
use_cassette() block:

library(testthat)
vcr::use_cassette("rl_citation", {
test_that("my test", {
aa <- rl_citation()

expect_is(aa, "character")
expect_match(aa, "IUCN")
expect_match(aa, "www.iucnredlist.org")

})
})

OR put the use_cassette() block on the inside, but make sure to put testthat
expectations outside of the use_cassette() block:

library(testthat)
test_that("my test", {
vcr::use_cassette("rl_citation", {
aa <- rl_citation()

})

expect_is(aa, "character")
expect_match(aa, "IUCN")
expect_match(aa, "www.iucnredlist.org")

})

Do not wrap the use_cassette() block inside your test_that() block with
testthat expectations inside the use_cassette() block, as you’ll only get the
line number that the use_cassette() block starts on on failures.

Chapter 32

Session info

32.1 Session info

library("magrittr")

dependencies <- attachment::att_from_rmds(".")
dependencies <- dependencies[!dependencies %in% c("attachment", "bookdown", "knitr")]

sessioninfo::package_info(
pkgs = dependencies
) %>%
as.data.frame() %>%
.[, c("package", "ondiskversion")] %>%
knitr::kable()

159

160 CHAPTER 32. SESSION INFO

package ondiskversion
askpass askpass 1.2.0
base64enc base64enc 0.1‑3
brio brio 1.1.4
callr callr 3.7.3
cli cli 3.6.2
crayon crayon 1.5.2
crul crul 1.4.0
curl curl 5.2.0
desc desc 1.4.3
diffobj diffobj 0.3.5
digest digest 0.6.34
evaluate evaluate 0.23
fansi fansi 1.0.6
fauxpas fauxpas 0.5.2
fs fs 1.6.3
gh gh 1.4.0
gitcreds gitcreds 0.1.2
glue glue 1.7.0
httpcode httpcode 0.3.0
httr httr 1.4.7
httr2 httr2 1.0.0
ini ini 0.3.1
jsonlite jsonlite 1.8.8
lifecycle lifecycle 1.0.4
magrittr magrittr 2.0.3
mime mime 0.12
openssl openssl 2.1.1
pillar pillar 1.9.0
pkgbuild pkgbuild 1.4.3
pkgconfig pkgconfig 2.0.3
pkgload pkgload 1.3.4
praise praise 1.0.0
processx processx 3.8.3
ps ps 1.7.6
R6 R6 2.5.1
rappdirs rappdirs 0.3.3
Rcpp Rcpp 1.0.12
rematch2 rematch2 2.1.2
rlang rlang 1.1.3
rprojroot rprojroot 2.0.4
sessioninfo sessioninfo 1.2.2
sys sys 3.4.2
testthat testthat 3.2.1
tibble tibble 3.2.1
triebeard triebeard 0.4.1
urltools urltools 1.7.3
utf8 utf8 1.2.4
vcr vcr 1.2.2
vctrs vctrs 0.6.5
waldo waldo 0.5.2
webmockr webmockr 0.9.0
whisker whisker 0.4.1
withr withr 3.0.0
yaml yaml 2.3.8

32.2. FULL SESSION INFO 161

None of crul, webmockr, vcr, httptest have compiled code, but an underlying de‑
pendency of all of them, curl does. See curl’s README for installation instructions
in case you run into curl related problems. webfakes has compiled code.

32.2 Full session info

Session info for this book

sessioninfo::session_info()

#> - Session info ---
#> setting value
#> version R version 4.3.2 (2023-10-31)
#> os Ubuntu 22.04.3 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C.UTF-8
#> ctype C.UTF-8
#> tz UTC
#> date 2024-02-02
#> pandoc 2.19.2 @ /usr/bin/ (via rmarkdown)
#>
#> - Packages ---
#> package * version date (UTC) lib source
#> attachment 0.4.1 2024-01-22 [1] RSPM
#> base64enc 0.1-3 2015-07-28 [1] RSPM
#> bookdown 0.37 2023-12-01 [1] RSPM
#> brio 1.1.4 2023-12-10 [1] RSPM
#> cli 3.6.2 2023-12-11 [1] RSPM
#> crul * 1.4.0 2023-05-17 [1] RSPM
#> curl 5.2.0 2023-12-08 [1] RSPM
#> desc 1.4.3 2023-12-10 [1] RSPM
#> digest 0.6.34 2024-01-11 [1] RSPM
#> evaluate 0.23 2023-11-01 [1] RSPM
#> fastmap 1.1.1 2023-02-24 [1] RSPM
#> fauxpas 0.5.2 2023-05-03 [1] RSPM
#> fs 1.6.3 2023-07-20 [1] RSPM
#> gh 1.4.0 2023-02-22 [1] RSPM
#> gitcreds 0.1.2 2022-09-08 [1] RSPM
#> glue 1.7.0 2024-01-09 [1] RSPM
#> htmltools 0.5.7 2023-11-03 [1] RSPM
#> httpcode 0.3.0 2020-04-10 [1] RSPM

https://github.com/jeroen/curl/#installation

162 CHAPTER 32. SESSION INFO

#> httr * 1.4.7 2023-08-15 [1] RSPM
#> httr2 1.0.0 2023-11-14 [1] RSPM
#> jsonlite 1.8.8 2023-12-04 [1] RSPM
#> knitr 1.45 2023-10-30 [1] RSPM
#> lifecycle 1.0.4 2023-11-07 [1] RSPM
#> magrittr * 2.0.3 2022-03-30 [1] RSPM
#> pkgload 1.3.4 2024-01-16 [1] RSPM
#> purrr 1.0.2 2023-08-10 [1] RSPM
#> R6 2.5.1 2021-08-19 [1] RSPM
#> rappdirs 0.3.3 2021-01-31 [1] RSPM
#> Rcpp 1.0.12 2024-01-09 [1] RSPM
#> rlang 1.1.3 2024-01-10 [1] RSPM
#> rmarkdown 2.25 2023-09-18 [1] RSPM
#> roxygen2 7.3.1 2024-01-22 [1] RSPM
#> rprojroot 2.0.4 2023-11-05 [1] RSPM
#> rstudioapi 0.15.0 2023-07-07 [1] RSPM
#> sessioninfo 1.2.2 2021-12-06 [1] RSPM
#> stringi 1.8.3 2023-12-11 [1] RSPM
#> stringr 1.5.1 2023-11-14 [1] RSPM
#> testthat * 3.2.1 2023-12-02 [1] RSPM
#> triebeard 0.4.1 2023-03-04 [1] RSPM
#> urltools 1.7.3 2019-04-14 [1] RSPM
#> vcr * 1.2.2 2023-06-25 [1] RSPM
#> vctrs 0.6.5 2023-12-01 [1] RSPM
#> webmockr * 0.9.0 2023-02-28 [1] RSPM
#> whisker 0.4.1 2022-12-05 [1] RSPM
#> xfun 0.41 2023-11-01 [1] RSPM
#> xml2 1.3.6 2023-12-04 [1] RSPM
#> yaml 2.3.8 2023-12-11 [1] RSPM
#>
#> [1] /home/runner/work/_temp/Library
#> [2] /opt/R/4.3.2/lib/R/site-library
#> [3] /opt/R/4.3.2/lib/R/library
#>
#> --

Page not found. Use the table of contents or the search bar to find your way back.

	Preamble
	I Introduction
	HTTP in R 101
	What is HTTP?
	HTTP requests in R: what package?

	Graceful HTTP R packages
	Choose the HTTP resource wisely
	User-facing grace (how your package actually works)
	Graceful vignettes and examples
	Graceful code
	Graceful tests
	Conclusion

	Packages for HTTP testing
	Why do we need special packages for HTTP testing?
	webmockr
	What is vcr?
	What is httptest?
	What is httptest2?
	What is webfakes?
	testthat
	Conclusion

	II Whole Game(s)
	Introduction
	Our example packages
	Conclusion

	Use vcr (& webmockr)
	Setup
	Actual testing
	Also testing for real interactions
	Summary
	PS: Where to put use_cassette()

	Use httptest
	Setup
	Actual testing
	Also testing for real interactions
	Summary

	vcr and httptest
	Setting up the infrastructure
	Calling mock files
	Naming mock files
	Matching requests
	Handling secrets
	Recording, playing back
	Testing for API errors
	Conclusion

	Use httptest2
	Setup
	Actual testing
	Also testing for real interactions
	Summary

	Use webfakes
	Setup
	Actual testing
	Also testing for real interactions
	Summary

	vcr (& webmockr), httptest, webfakes
	What HTTP client can you use (curl, httr, crul)
	Sustainability of the packages
	Test writing experience
	Test debugging experience
	Conclusion

	III Advanced Topics
	Making real requests
	What can change?
	How to make real requests
	Why not make only or too many real requests?
	A complement to real requests: API news!

	CRAN- (and Bioconductor) preparedness for your tests
	Running tests on CRAN?
	Skipping a few tests on CRAN?
	Skipping all tests on CRAN?
	Stress-test your package

	Security
	Managing secrets securely
	Sensitive recorded responses?
	Further resources

	Faking HTTP errors
	How to test for API errors (e.g. 503)
	How to test for sequence of responses (e.g. 503 then 200)

	Contributor friendliness
	Taking notes about encryption
	Providing a sandbox
	Switching between accounts depending on the development mode
	Documenting HTTP testing

	IV Conclusion
	Conclusion

	V webmockr details
	Mocking HTTP Requests
	Package documentation
	Features
	How webmockr works in detail
	Basic usage

	stubs
	Writing to disk

	testing
	utilities
	Managing stubs
	Managing stubs
	Managing requests

	VI vcr details
	Caching HTTP requests
	Package documentation
	Terminology
	Design
	Basic usage
	vcr enabled testing

	Advanced vcr usage
	Mocking writing to disk

	Configure vcr
	Set configuration variables
	Re-set to defaults
	Details on some of the config options

	Record modes
	once
	none
	new_episodes
	all

	Request matching
	Matching

	Debugging your tests that use vcr
	An HTTP request has been made that vcr does not know how to handle

	Security with vcr
	Keeping secrets safe
	API keys and tests run in varied contexts
	Other security

	Turning vcr on and off
	turned_off
	turn_off/turn_on
	turned_on
	Environment variables

	Managing cassettes
	Why edit cassettes?
	Risks related to cassette editing
	Example 1: test using an edited cassette with a 503
	Example 2: test using an edited cassette with a 503 then a 200
	gitignore cassettes
	Rbuildignore cassettes
	sharing cassettes
	deleting cassettes
	cassette file types

	Gotchas
	Correct line identification

	Session info
	Session info
	Full session info

